Hongyuan Xu
2023
TacoPrompt: A Collaborative Multi-Task Prompt Learning Method for Self-Supervised Taxonomy Completion
Hongyuan Xu
|
Ciyi Liu
|
Yuhang Niu
|
Yunong Chen
|
Xiangrui Cai
|
Yanlong Wen
|
Xiaojie Yuan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Automatic taxonomy completion aims to attach the emerging concept to an appropriate pair of hypernym and hyponym in the existing taxonomy. Existing methods suffer from the overfitting to leaf-only problem caused by imbalanced leaf and non-leaf samples when training the newly initialized classification head. Besides, they only leverage subtasks, namely attaching the concept to its hypernym or hyponym, as auxiliary supervision for representation learning yet neglect the effects of subtask results on the final prediction. To address the aforementioned limitations, we propose TacoPrompt, a Collaborative Multi-Task Prompt Learning Method for Self-Supervised Taxonomy Completion. First, we perform triplet semantic matching using the prompt learning paradigm to effectively learn non-leaf attachment ability from imbalanced training samples. Second, we design the result context to relate the final prediction to the subtask results by a contextual approach, enhancing prompt-based multi-task learning. Third, we leverage a two-stage retrieval and re-ranking approach to improve the inference efficiency. Experimental results on three datasets show that TacoPrompt achieves state-of-the-art taxonomy completion performance. Codes are available at https://github.com/cyclexu/TacoPrompt.
2021
TEMP: Taxonomy Expansion with Dynamic Margin Loss through Taxonomy-Paths
Zichen Liu
|
Hongyuan Xu
|
Yanlong Wen
|
Ning Jiang
|
HaiYing Wu
|
Xiaojie Yuan
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
As an essential form of knowledge representation, taxonomies are widely used in various downstream natural language processing tasks. However, with the continuously rising of new concepts, many existing taxonomies are unable to maintain coverage by manual expansion. In this paper, we propose TEMP, a self-supervised taxonomy expansion method, which predicts the position of new concepts by ranking the generated taxonomy-paths. For the first time, TEMP employs pre-trained contextual encoders in taxonomy construction and hypernym detection problems. Experiments prove that pre-trained contextual embeddings are able to capture hypernym-hyponym relations. To learn more detailed differences between taxonomy-paths, we train the model with dynamic margin loss by a novel dynamic margin function. Extensive evaluations exhibit that TEMP outperforms prior state-of-the-art taxonomy expansion approaches by 14.3% in accuracy and 15.8% in mean reciprocal rank on three public benchmarks.
Search
Fix data
Co-authors
- Yanlong Wen 2
- Xiaojie Yuan 2
- Xiangrui Cai 1
- Yunong Chen 1
- Ning Jiang 1
- show all...