Huanxuan Liao


2025

pdf bib
Awakening Augmented Generation: Learning to Awaken Internal Knowledge of Large Language Models for Question Answering
Huanxuan Liao | Shizhu He | Yao Xu | Yuanzhe Zhang | Shengping Liu | Kang Liu | Jun Zhao
Proceedings of the 31st International Conference on Computational Linguistics

Retrieval-Augmented-Generation and Generation-Augmented-Generation have been proposed to enhance the knowledge required for question answering with Large Language Models (LLMs) by leveraging richer context. However, the former relies on external resources, and both require incorporating explicit documents into the context, which increases execution costs and susceptibility to noise data during inference. Recent works indicate that LLMs model rich knowledge, but it is often not effectively activated and awakened. Inspired by this, we propose a novel knowledge-augmented framework, Awakening-Augmented-Generation (AAG), which mimics the human ability to answer questions using only thinking and recalling to compensate for knowledge gaps, thereby awaking relevant knowledge in LLMs without relying on external resources. AAG consists of two key components for awakening richer context. Explicit awakening fine-tunes a context generator to create a synthetic, compressed document that functions as symbolic context. Implicit awakening utilizes a hypernetwork to generate adapters based on the question and synthetic document, which are inserted into LLMs to serve as parameter context. Experimental results on three datasets demonstrate that AAG exhibits significant advantages in both open-domain and closed-book settings, as well as in out-of-distribution generalization. Our code will be available at https://github.com/Xnhyacinth/IAG.

pdf bib
SKIntern: Internalizing Symbolic Knowledge for Distilling Better CoT Capabilities into Small Language Models
Huanxuan Liao | Shizhu He | Yupu Hao | Xiang Li | Yuanzhe Zhang | Jun Zhao | Kang Liu
Proceedings of the 31st International Conference on Computational Linguistics

Small Language Models (SLMs) are attracting attention due to the high computational demands and privacy concerns of Large Language Models (LLMs). Some studies fine-tune SLMs using Chains of Thought (CoT) data distilled from LLMs, aiming to enhance their reasoning ability. Furthermore, Some CoT distillation methods introduce external symbolic knowledge into the generation process to improve the limited knowledge memory, reasoning ability and out-of-domain (OOD) generalization of SLMs. However, the introduction of symbolic knowledge increases computational overhead and introduces potential noise. In this paper, we introduce SKIntern, an innovative approach that empowers SLMs to internalize symbolic knowledge and few-shot examples gradually through a progressive fine-tuning process, guided by a predefined linear decay schedule under curriculum learning. By efficiently internalizing knowledge, SKIntern reduces computational overhead and speeds up the reasoning process by focusing solely on the question during inference. It outperforms state-of-the-art baselines by over 5%, while reducing inference costs (measured in FLOPs) by up to across a wide range of SLMs in both in-domain (ID) and out-of-domain (OOD) tasks. Our code will be available at https://github.com/Xnhyacinth/SKIntern.