Iñigo Lopez-Gazpio


2018

pdf bib
Uncovering Divergent Linguistic Information in Word Embeddings with Lessons for Intrinsic and Extrinsic Evaluation
Mikel Artetxe | Gorka Labaka | Iñigo Lopez-Gazpio | Eneko Agirre
Proceedings of the 22nd Conference on Computational Natural Language Learning

Following the recent success of word embeddings, it has been argued that there is no such thing as an ideal representation for words, as different models tend to capture divergent and often mutually incompatible aspects like semantics/syntax and similarity/relatedness. In this paper, we show that each embedding model captures more information than directly apparent. A linear transformation that adjusts the similarity order of the model without any external resource can tailor it to achieve better results in those aspects, providing a new perspective on how embeddings encode divergent linguistic information. In addition, we explore the relation between intrinsic and extrinsic evaluation, as the effect of our transformations in downstream tasks is higher for unsupervised systems than for supervised ones.

2017

pdf bib
SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation
Daniel Cer | Mona Diab | Eneko Agirre | Iñigo Lopez-Gazpio | Lucia Specia
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

Semantic Textual Similarity (STS) measures the meaning similarity of sentences. Applications include machine translation (MT), summarization, generation, question answering (QA), short answer grading, semantic search, dialog and conversational systems. The STS shared task is a venue for assessing the current state-of-the-art. The 2017 task focuses on multilingual and cross-lingual pairs with one sub-track exploring MT quality estimation (MTQE) data. The task obtained strong participation from 31 teams, with 17 participating in all language tracks. We summarize performance and review a selection of well performing methods. Analysis highlights common errors, providing insight into the limitations of existing models. To support ongoing work on semantic representations, the STS Benchmark is introduced as a new shared training and evaluation set carefully selected from the corpus of English STS shared task data (2012-2017).

2016

pdf bib
SemEval-2016 Task 2: Interpretable Semantic Textual Similarity
Eneko Agirre | Aitor Gonzalez-Agirre | Iñigo Lopez-Gazpio | Montse Maritxalar | German Rigau | Larraitz Uria
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

pdf bib
iUBC at SemEval-2016 Task 2: RNNs and LSTMs for interpretable STS
Iñigo Lopez-Gazpio | Eneko Agirre | Montse Maritxalar
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

2015

pdf bib
UBC: Cubes for English Semantic Textual Similarity and Supervised Approaches for Interpretable STS
Eneko Agirre | Aitor Gonzalez-Agirre | Iñigo Lopez-Gazpio | Montse Maritxalar | German Rigau | Larraitz Uria
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)

pdf bib
SemEval-2015 Task 2: Semantic Textual Similarity, English, Spanish and Pilot on Interpretability
Eneko Agirre | Carmen Banea | Claire Cardie | Daniel Cer | Mona Diab | Aitor Gonzalez-Agirre | Weiwei Guo | Iñigo Lopez-Gazpio | Montse Maritxalar | Rada Mihalcea | German Rigau | Larraitz Uria | Janyce Wiebe
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)