J. Saketha Nath


2018

pdf bib
Entity Resolution and Location Disambiguation in the Ancient Hindu Temples Domain using Web Data
Ayush Maheshwari | Vishwajeet Kumar | Ganesh Ramakrishnan | J. Saketha Nath
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

We present a system for resolving entities and disambiguating locations based on publicly available web data in the domain of ancient Hindu Temples. Scarce, unstructured information poses a challenge to Entity Resolution(ER) and snippet ranking. Additionally, because the same set of entities may be associated with multiple locations, Location Disambiguation(LD) is a problem. The mentions and descriptions of temples exist in the order of hundreds of thousands, with such data generated by various users in various forms such as text (Wikipedia pages), videos (YouTube videos), blogs, etc. We demonstrate an integrated approach using a combination of grammar rules for parsing and unsupervised (clustering) algorithms to resolve entity and locations with high confidence. A demo of our system is accessible at tinyurl.com/templedemos. Our system is open source and available on GitHub.

2013

pdf bib
Detecting Turnarounds in Sentiment Analysis: Thwarting
Ankit Ramteke | Akshat Malu | Pushpak Bhattacharyya | J. Saketha Nath
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)