An open challenge in recent machine learning is about how to improve the reasoning capability of large language models (LLMs) in a black-box setting, i.e., without access to detailed information such as output token probabilities. Existing approaches either rely on accessibility (which is often unrealistic) or involve significantly increased train- and inference-time costs. This paper addresses those limitations or shortcomings by proposing a novel approach, namely CoBB (Correct for improving QA reasoning of Black-Box LLMs). It uses a trained adaptation model to perform a seq2seq mapping from the often-imperfect reasonings of the original black-box LLM to the correct or improved reasonings. Specifically, the adaptation model is initialized with a relatively small open-source LLM and adapted over a collection of sub-sampled training pairs. To select the representative pairs of correct and incorrect reasonings, we formulated the dataset construction as an optimization problem that minimizes the statistical divergence between the sampled subset and the entire collection, and solved it via a genetic algorithm. We then train the adaptation model over the sampled pairs by contrasting the likelihoods of correct and incorrect reasonings. Our experimental results demonstrate that CoBB significantly improves reasoning accuracy across various QA benchmarks, compared to the best-performing adaptation baselines.
The success of NLP systems often relies on the availability of large, high-quality datasets. However, not all samples in these datasets are equally valuable for learning, as some may be redundant or noisy. Several methods for characterizing datasets based on model-driven meta-information (e.g., model’s confidence) have been developed, but the relationship and complementary effects of these methods have received less attention. In this paper, we introduce infoVerse, a universal framework for dataset characterization, which provides a new feature space that effectively captures multidimensional characteristics of datasets by incorporating various model-driven meta-information. infoVerse reveals distinctive regions of the dataset that are not apparent in the original semantic space, hence guiding users (or models) in identifying which samples to focus on for exploration, assessment, or annotation. Additionally, we propose a novel sampling method on infoVerse to select a set of data points that maximizes informativeness. In three real-world applications (data pruning, active learning, and data annotation), the samples chosen on infoVerse space consistently outperform strong baselines in all applications. Our code and demo are publicly available.
Fine-tuning pre-trained language models (LMs) has become the de facto standard in many NLP tasks. Nevertheless, fine-tuned LMs are still prone to robustness issues, such as adversarial robustness and model calibration. Several perspectives of robustness for LMs have been studied independently, but lacking a unified consideration in multiple perspectives. In this paper, we propose Robustifying LMs via Adversarial perturbation with Selective Training (RoAST), a simple yet effective fine-tuning technique to enhance the multi-perspective robustness of LMs in a unified way. RoAST effectively incorporates two important sources for the model robustness, robustness on the perturbed inputs and generalizable knowledge in pre-trained LMs. To be specific, RoAST introduces adversarial perturbation during fine-tuning while the model parameters are selectively updated upon their relative importance to minimize unnecessary deviation. Under a unified evaluation of fine-tuned LMs by incorporating four representative perspectives of model robustness, we demonstrate the effectiveness of RoAST compared to state-of-the-art fine-tuning methods on six different types of LMs, which indicates its usefulness in practice.