James Flemings


2024

pdf bib
Differentially Private Knowledge Distillation via Synthetic Text Generation
James Flemings | Murali Annavaram
Findings of the Association for Computational Linguistics: ACL 2024

Large Language models (LLMs) are achieving state-of-the-art performance in many different downstream tasks. However, the increasing urgency of data privacy puts pressure on practitioners to train LLMs with Differential Privacy (DP) on private data. Concurrently, the exponential growth in parameter size of LLMs necessitates model compression before deployment of LLMs on resource-constrained devices or latency-sensitive applications. Differential privacy and model compression generally must trade off utility loss to achieve their objectives. Moreover, simultaneously applying both schemes can compound the utility degradation. To this end, we propose DistilDP: a novel differentially private knowledge distillation algorithm that exploits synthetic data generated by a differentially private teacher LLM. The knowledge of a teacher LLM is transferred onto the student in two ways: one way from the synthetic data itself– the hard labels, and the other way by the output distribution of the teacher evaluated on the synthetic data– the soft labels. Furthermore, if the teacher and student share a similar architectural structure, we can further distill knowledge by aligning the hidden representations between both. Our experimental results demonstrate that DistilDP can substantially improve the utility over existing baselines, at least 9.0 PPL on the Big Patent dataset, with strong privacy parameters, 𝜖=2. These promising results progress privacy-preserving compression of autoregressive LLMs. Our code can be accessed here: https://github.com/james-flemings/dp_compress.

pdf bib
Differentially Private Next-Token Prediction of Large Language Models
James Flemings | Meisam Razaviyayn | Murali Annavaram
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Ensuring the privacy of Large Language Models (LLMs) is becoming increasingly important. The most widely adopted technique to accomplish this is DP-SGD, which trains a model to guarantee Differential Privacy (DP). However, DP-SGD overestimates an adversary’s capabilities in having white box access to the model and, as a result, causes longer training times and larger memory usage than SGD. On the other hand, commercial LLM deployments are predominantly cloud-based; hence, adversarial access to LLMs is black-box. Motivated by these observations, we present Private Mixing of Ensemble Distributions (PMixED): a private prediction protocol for next-token prediction that utilizes the inherent stochasticity of next-token sampling and a public model to achieve Differential Privacy. We formalize this by introducing RD-mollifers which project each of the model’s output distribution from an ensemble of fine-tuned LLMs onto a set around a public LLM’s output distribution, then average the projected distributions and sample from it. Unlike DP-SGD which needs to consider the model architecture during training, PMixED is model agnostic, which makes PMixED a very appealing solution for current deployments. Our results show that PMixED achieves a stronger privacy guarantee than sample-level privacy and outperforms DP-SGD for privacy 𝜖 = 8 on large-scale datasets. Thus, PMixED offers a practical alternative to DP training methods for achieving strong generative utility without compromising privacy.