Jessica Zhang
2022
Multimodal Dialogue Response Generation
Qingfeng Sun
|
Yujing Wang
|
Can Xu
|
Kai Zheng
|
Yaming Yang
|
Huang Hu
|
Fei Xu
|
Jessica Zhang
|
Xiubo Geng
|
Daxin Jiang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Responsing with image has been recognized as an important capability for an intelligent conversational agent. Yet existing works only focus on exploring the multimodal dialogue models which depend on retrieval-based methods, but neglecting generation methods. To fill in the gaps, we first present a new task: multimodal dialogue response generation (MDRG) - given the dialogue history, one model needs to generate a text sequence or an image as response. Learning such a MDRG model often requires multimodal dialogues containing both texts and images which are difficult to obtain. Motivated by the challenge in practice, we consider MDRG under a natural assumption that only limited training examples are available. In such a low-resource setting, we devise a novel conversational agent, Divter, in order to isolate parameters that depend on multimodal dialogues from the entire generation model. By this means, the major part of the model can be learned from a large number of text-only dialogues and text-image pairs respectively, then the whole parameters can be well fitted using the limited training examples. Extensive experiments demonstrate our method achieves state-of-the-art results in both automatic and human evaluation, and can generate informative text and high-resolution image responses.
Search
Fix data
Co-authors
- Xiubo Geng 1
- Huang Hu 1
- Daxin Jiang 1
- Qingfeng Sun 1
- Yujing Wang 1
- show all...
Venues
- acl1