Jiahui Zhu


2024

pdf bib
Deja vu: Contrastive Historical Modeling with Prefix-tuning for Temporal Knowledge Graph Reasoning
Miao Peng | Ben Liu | Wenjie Xu | Zihao Jiang | Jiahui Zhu | Min Peng
Findings of the Association for Computational Linguistics: NAACL 2024

Temporal Knowledge Graph Reasoning (TKGR) is the task of inferring missing facts for incomplete TKGs in complex scenarios (e.g., transductive and inductive settings), which has been gaining increasing attention. Recently, to mitigate dependence on structured connections in TKGs, text-based methods have been developed to utilize rich linguistic information from entity descriptions. However, suffering from the enormous parameters and inflexibility of pre-trained language models, existing text-based methods struggle to balance the textual knowledge and temporal information with computationally expensive purpose-built training strategies. To tap the potential of text-based models for TKGR in various complex scenarios, we propose ChapTER, a Contrastive historical modeling framework with prefix-tuning for TEmporal Reasoning. ChapTER feeds history-contextualized text into the pseudo-Siamese encoders to strike a textual-temporal balance via contrastive estimation between queries and candidates. By introducing virtual time prefix tokens, it applies a prefix-based tuning method to facilitate the frozen PLM capable for TKGR tasks under different settings. We evaluate ChapTER on four transductive and three few-shot inductive TKGR benchmarks, and experimental results demonstrate that ChapTER achieves superior performance compared to competitive baselines with only 0.17% tuned parameters. We conduct thorough analysis to verify the effectiveness, flexibility and efficiency of ChapTER.

2023

pdf bib
AnchiLm: An Effective Classical-to-Modern Chinese Translation Model Leveraging bpe-drop and SikuRoBERTa
Jiahui Zhu | Sizhou Chen
Proceedings of ALT2023: Ancient Language Translation Workshop

In this paper, we present our submitted model for translating ancient to modern texts, which ranked sixth in the closed track of ancient Chinese in the 2nd International Review of Automatic Analysis of Ancient Chinese (EvaHan). Specifically, we employed two strategies to improve the translation from ancient to modern texts. First, we used bpe-drop to enhance the parallel corpus. Second, we use SikuRoBERTa to simultaneously initialize the translation model’s codec and reconstruct the bpe word list. In our experiments, we compare the baseline model, rdrop, pre-trained model, and parameter initialization methods. The experimental results show that the parameter initialization method in this paper significantly outperforms the baseline model in terms of performance, and its BLEU score reaches 21.75.