Jiaming Xu


2019

pdf bib
The World in My Mind: Visual Dialog with Adversarial Multi-modal Feature Encoding
Yiqun Yao | Jiaming Xu | Bo Xu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Visual Dialog is a multi-modal task that requires a model to participate in a multi-turn human dialog grounded on an image, and generate correct, human-like responses. In this paper, we propose a novel Adversarial Multi-modal Feature Encoding (AMFE) framework for effective and robust auxiliary training of visual dialog systems. AMFE can force the language-encoding part of a model to generate hidden states in a distribution closely related to the distribution of real-world images, resulting in language features containing general knowledge from both modalities by nature, which can help generate both more correct and more general responses with reasonably low time cost. Experimental results show that AMFE can steadily bring performance gains to different models on different scales of data. Our method outperforms both the supervised learning baselines and other fine-tuning methods, achieving state-of-the-art results on most metrics of VisDial v0.5/v0.9 generative tasks.

pdf bib
A Working Memory Model for Task-oriented Dialog Response Generation
Xiuyi Chen | Jiaming Xu | Bo Xu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Recently, to incorporate external Knowledge Base (KB) information, one form of world knowledge, several end-to-end task-oriented dialog systems have been proposed. These models, however, tend to confound the dialog history with KB tuples and simply store them into one memory. Inspired by the psychological studies on working memory, we propose a working memory model (WMM2Seq) for dialog response generation. Our WMM2Seq adopts a working memory to interact with two separated long-term memories, which are the episodic memory for memorizing dialog history and the semantic memory for storing KB tuples. The working memory consists of a central executive to attend to the aforementioned memories, and a short-term storage system to store the “activated” contents from the long-term memories. Furthermore, we introduce a context-sensitive perceptual process for the token representations of dialog history, and then feed them into the episodic memory. Extensive experiments on two task-oriented dialog datasets demonstrate that our WMM2Seq significantly outperforms the state-of-the-art results in several evaluation metrics.

2018

pdf bib
Cascaded Mutual Modulation for Visual Reasoning
Yiqun Yao | Jiaming Xu | Feng Wang | Bo Xu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Visual reasoning is a special visual question answering problem that is multi-step and compositional by nature, and also requires intensive text-vision interactions. We propose CMM: Cascaded Mutual Modulation as a novel end-to-end visual reasoning model. CMM includes a multi-step comprehension process for both question and image. In each step, we use a Feature-wise Linear Modulation (FiLM) technique to enable textual/visual pipeline to mutually control each other. Experiments show that CMM significantly outperforms most related models, and reach state-of-the-arts on two visual reasoning benchmarks: CLEVR and NLVR, collected from both synthetic and natural languages. Ablation studies confirm the effectiveness of CMM to comprehend natural language logics under the guidence of images. Our code is available at https://github.com/FlamingHorizon/CMM-VR.

2016

pdf bib
Hierarchical Memory Networks for Answer Selection on Unknown Words
Jiaming Xu | Jing Shi | Yiqun Yao | Suncong Zheng | Bo Xu | Bo Xu
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Recently, end-to-end memory networks have shown promising results on Question Answering task, which encode the past facts into an explicit memory and perform reasoning ability by making multiple computational steps on the memory. However, memory networks conduct the reasoning on sentence-level memory to output coarse semantic vectors and do not further take any attention mechanism to focus on words, which may lead to the model lose some detail information, especially when the answers are rare or unknown words. In this paper, we propose a novel Hierarchical Memory Networks, dubbed HMN. First, we encode the past facts into sentence-level memory and word-level memory respectively. Then, k-max pooling is exploited following reasoning module on the sentence-level memory to sample the k most relevant sentences to a question and feed these sentences into attention mechanism on the word-level memory to focus the words in the selected sentences. Finally, the prediction is jointly learned over the outputs of the sentence-level reasoning module and the word-level attention mechanism. The experimental results demonstrate that our approach successfully conducts answer selection on unknown words and achieves a better performance than memory networks.

pdf bib
Text Classification Improved by Integrating Bidirectional LSTM with Two-dimensional Max Pooling
Peng Zhou | Zhenyu Qi | Suncong Zheng | Jiaming Xu | Hongyun Bao | Bo Xu
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Recurrent Neural Network (RNN) is one of the most popular architectures used in Natural Language Processsing (NLP) tasks because its recurrent structure is very suitable to process variable-length text. RNN can utilize distributed representations of words by first converting the tokens comprising each text into vectors, which form a matrix. And this matrix includes two dimensions: the time-step dimension and the feature vector dimension. Then most existing models usually utilize one-dimensional (1D) max pooling operation or attention-based operation only on the time-step dimension to obtain a fixed-length vector. However, the features on the feature vector dimension are not mutually independent, and simply applying 1D pooling operation over the time-step dimension independently may destroy the structure of the feature representation. On the other hand, applying two-dimensional (2D) pooling operation over the two dimensions may sample more meaningful features for sequence modeling tasks. To integrate the features on both dimensions of the matrix, this paper explores applying 2D max pooling operation to obtain a fixed-length representation of the text. This paper also utilizes 2D convolution to sample more meaningful information of the matrix. Experiments are conducted on six text classification tasks, including sentiment analysis, question classification, subjectivity classification and newsgroup classification. Compared with the state-of-the-art models, the proposed models achieve excellent performance on 4 out of 6 tasks. Specifically, one of the proposed models achieves highest accuracy on Stanford Sentiment Treebank binary classification and fine-grained classification tasks.

pdf bib
Combining Lexical and Semantic-based Features for Answer Sentence Selection
Jing Shi | Jiaming Xu | Yiqun Yao | Suncong Zheng | Bo Xu
Proceedings of the Open Knowledge Base and Question Answering Workshop (OKBQA 2016)

Question answering is always an attractive and challenging task in natural language processing area. There are some open domain question answering systems, such as IBM Waston, which take the unstructured text data as input, in some ways of humanlike thinking process and a mode of artificial intelligence. At the conference on Natural Language Processing and Chinese Computing (NLPCC) 2016, China Computer Federation hosted a shared task evaluation about Open Domain Question Answering. We achieve the 2nd place at the document-based subtask. In this paper, we present our solution, which consists of feature engineering in lexical and semantic aspects and model training methods. As the result of the evaluation shows, our solution provides a valuable and brief model which could be used in modelling question answering or sentence semantic relevance. We hope our solution would contribute to this vast and significant task with some heuristic thinking.

2015

pdf bib
Semantic Clustering and Convolutional Neural Network for Short Text Categorization
Peng Wang | Jiaming Xu | Bo Xu | Chenglin Liu | Heng Zhang | Fangyuan Wang | Hongwei Hao
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

pdf bib
Short Text Clustering via Convolutional Neural Networks
Jiaming Xu | Peng Wang | Guanhua Tian | Bo Xu | Jun Zhao | Fangyuan Wang | Hongwei Hao
Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing