Jiayi Shi


2023

pdf bib
Parallel Corpora Alignment Framework for Multilingual and Robust Automatic Dialogue Evaluation
Xinglin Wang | Jiayi Shi | Peiwen Yuan | Kan Li
Proceedings of The Eleventh Dialog System Technology Challenge

Open-domain automatic dialogue evaluation plays an important role in dialogue systems. While recent efforts are being put into making learning-based evaluation metrics correlate better with human evaluation, robust metrics for parallel corpora and multiple domains remain unexplored. Parallel corpora refer to corpora that express the same idea in different ways (e.g., translation, paraphrasing and back-translation). In this paper, we propose Parallel Corpora Alignment Framework (PCAF), which improves the consistency and robustness of model evaluation on parallel corpora. Firstly, parallel corpora are aligned in semantic space through parallel-corpora-aligned contrastive learning. Then, parallel-corpora-aligned distillation on multi-dataset is applied to further improve model’s generalization ability across multiple data domains. Our approach ranks second on the final test data of DSTC11 track4 subtask1 (“Multilingual Automatic Evaluation Metrics”, turn-level) and third on the subtask2 (“Robust Automatic Evaluation Metrics”, turn-level), which proves the strong generalization ability and robustness of our proposed approach.