Jie Luo
2024
MMedAgent: Learning to Use Medical Tools with Multi-modal Agent
Binxu Li
|
Tiankai Yan
|
Yuanting Pan
|
Jie Luo
|
Ruiyang Ji
|
Jiayuan Ding
|
Zhe Xu
|
Shilong Liu
|
Haoyu Dong
|
Zihao Lin
|
Yixin Wang
Findings of the Association for Computational Linguistics: EMNLP 2024
Multi-Modal Large Language Models (MLLMs), despite being successful, exhibit limited generality and often fall short when compared to specialized models. Recently, LLM-based agents have been developed to address these challenges by selecting appropriate specialized models as tools based on user inputs. However, such advancements have not been extensively explored within the medical domain. To bridge this gap, this paper introduces the first agent explicitly designed for the medical field, named Multi-modal Medical Agent (MMedAgent). We curate an instruction-tuning dataset comprising six medical tools solving seven tasks across five modalities, enabling the agent to choose the most suitable tools for a given task. Comprehensive experiments demonstrate that MMedAgent achieves superior performance across a variety of medical tasks compared to state-of-the-art open-source methods and even the closed-source model, GPT-4o. Furthermore, MMedAgent exhibits efficiency in updating and integrating new medical tools.
2019
Distant Supervised Relation Extraction with Separate Head-Tail CNN
Rui Xing
|
Jie Luo
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
Distant supervised relation extraction is an efficient and effective strategy to find relations between entities in texts. However, it inevitably suffers from mislabeling problem and the noisy data will hinder the performance. In this paper, we propose the Separate Head-Tail Convolution Neural Network (SHTCNN), a novel neural relation extraction framework to alleviate this issue. In this method, we apply separate convolution and pooling to the head and tail entity respectively for extracting better semantic features of sentences, and coarse-to-fine strategy to filter out instances which do not have actual relations in order to alleviate noisy data issues. Experiments on a widely used dataset show that our model achieves significant and consistent improvements in relation extraction compared to statistical and vanilla CNN-based methods.