Jihun Choi


2024

pdf bib
Analysis of Multi-Source Language Training in Cross-Lingual Transfer
Seonghoon Lim | Taejun Yun | Jinhyeon Kim | Jihun Choi | Taeuk Kim
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The successful adaptation of multilingual language models (LMs) to a specific language-task pair critically depends on the availability of data tailored for that condition. While cross-lingual transfer (XLT) methods have contributed to addressing this data scarcity problem, there still exists ongoing debate about the mechanisms behind their effectiveness.In this work, we focus on one of promising assumptions about inner workings of XLT, that it encourages multilingual LMs to place greater emphasis on language-agnostic or task-specific features. We test this hypothesis by examining how the patterns of XLT change with a varying number of source languages involved in the process.Our experimental findings show that the use of multiple source languages in XLT-a technique we term Multi-Source Language Training (MSLT)-leads to increased mingling of embedding spaces for different languages, supporting the claim that XLT benefits from making use of language-independent information. On the other hand, we discover that using an arbitrary combination of source languages does not always guarantee better performance. We suggest simple heuristics for identifying effective language combinations for MSLT and empirically prove its effectiveness.

pdf bib
CookingSense: A Culinary Knowledgebase with Multidisciplinary Assertions
Donghee Choi | Mogan Gim | Donghyeon Park | Mujeen Sung | Hyunjae Kim | Jaewoo Kang | Jihun Choi
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

This paper introduces CookingSense, a descriptive collection of knowledge assertions in the culinary domain extracted from various sources, including web data, scientific papers, and recipes, from which knowledge covering a broad range of aspects is acquired. CookingSense is constructed through a series of dictionary-based filtering and language model-based semantic filtering techniques, which results in a rich knowledgebase of multidisciplinary food-related assertions. Additionally, we present FoodBench, a novel benchmark to evaluate culinary decision support systems. From evaluations with FoodBench, we empirically prove that CookingSense improves the performance of retrieval augmented language models. We also validate the quality and variety of assertions in CookingSense through qualitative analysis.

2019

pdf bib
A Cross-Sentence Latent Variable Model for Semi-Supervised Text Sequence Matching
Jihun Choi | Taeuk Kim | Sang-goo Lee
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present a latent variable model for predicting the relationship between a pair of text sequences. Unlike previous auto-encoding–based approaches that consider each sequence separately, our proposed framework utilizes both sequences within a single model by generating a sequence that has a given relationship with a source sequence. We further extend the cross-sentence generating framework to facilitate semi-supervised training. We also define novel semantic constraints that lead the decoder network to generate semantically plausible and diverse sequences. We demonstrate the effectiveness of the proposed model from quantitative and qualitative experiments, while achieving state-of-the-art results on semi-supervised natural language inference and paraphrase identification.

pdf bib
SNU IDS at SemEval-2019 Task 3: Addressing Training-Test Class Distribution Mismatch in Conversational Classification
Sanghwan Bae | Jihun Choi | Sang-goo Lee
Proceedings of the 13th International Workshop on Semantic Evaluation

We present several techniques to tackle the mismatch in class distributions between training and test data in the Contextual Emotion Detection task of SemEval 2019, by extending the existing methods for class imbalance problem. Reducing the distance between the distribution of prediction and ground truth, they consistently show positive effects on the performance. Also we propose a novel neural architecture which utilizes representation of overall context as well as of each utterance. The combination of the methods and the models achieved micro F1 score of about 0.766 on the final evaluation.

2018

pdf bib
SNU_IDS at SemEval-2018 Task 12: Sentence Encoder with Contextualized Vectors for Argument Reasoning Comprehension
Taeuk Kim | Jihun Choi | Sang-goo Lee
Proceedings of the 12th International Workshop on Semantic Evaluation

We present a novel neural architecture for the Argument Reasoning Comprehension task of SemEval 2018. It is a simple neural network consisting of three parts, collectively judging whether the logic built on a set of given sentences (a claim, reason, and warrant) is plausible or not. The model utilizes contextualized word vectors pre-trained on large machine translation (MT) datasets as a form of transfer learning, which can help to mitigate the lack of training data. Quantitative analysis shows that simply leveraging LSTMs trained on MT datasets outperforms several baselines and non-transferred models, achieving accuracies of about 70% on the development set and about 60% on the test set.

pdf bib
Element-wise Bilinear Interaction for Sentence Matching
Jihun Choi | Taeuk Kim | Sang-goo Lee
Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics

When we build a neural network model predicting the relationship between two sentences, the most general and intuitive approach is to use a Siamese architecture, where the sentence vectors obtained from a shared encoder is given as input to a classifier. For the classifier to work effectively, it is important to extract appropriate features from the two vectors and feed them as input. There exist several previous works that suggest heuristic-based function for matching sentence vectors, however it cannot be said that the heuristics tailored for a specific task generalize to other tasks. In this work, we propose a new matching function, ElBiS, that learns to model element-wise interaction between two vectors. From experiments, we empirically demonstrate that the proposed ElBiS matching function outperforms the concatenation-based or heuristic-based matching functions on natural language inference and paraphrase identification, while maintaining the fused representation compact.