Jintian Zhang
2024
OneGen: Efficient One-Pass Unified Generation and Retrieval for LLMs
Jintian Zhang
|
Cheng Peng
|
Mengshu Sun
|
Xiang Chen
|
Lei Liang
|
Zhiqiang Zhang
|
Jun Zhou
|
Huajun Chen
|
Ningyu Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024
Despite the recent advancements in Large Language Models (LLMs), which have significantly enhanced the generative capabilities for various NLP tasks, LLMs still face limitations in directly handling retrieval tasks. However, many practical applications demand the seamless integration of both retrieval and generation. This paper introduces a novel and efficient One-pass Generation and retrieval framework (OneGen), designed to improve LLMs’ performance on tasks that require both generation and retrieval. The proposed framework bridges the traditionally separate training approaches for generation and retrieval by incorporating retrieval tokens generated autoregressively. This enables a single LLM to handle both tasks simultaneously in a unified forward pass. We conduct experiments on two distinct types of composite tasks, RAG and Entity Linking, to validate the pluggability, effectiveness, and efficiency of OneGen in training and inference. Furthermore, our results show that integrating generation and retrieval within the same context preserves the generative capabilities of LLMs while improving retrieval performance. To the best of our knowledge, OneGen is the first to enable LLMs to conduct vector retrieval during the generation.
Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View
Jintian Zhang
|
Xin Xu
|
Ningyu Zhang
|
Ruibo Liu
|
Bryan Hooi
|
Shumin Deng
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
As Natural Language Processing (NLP) systems are increasingly employed in intricate social environments, a pressing query emerges: *Can these NLP systems mirror human-esque collaborative intelligence, in a multi-agent society consisting of multiple large language models (LLMs)?* This paper probes the collaboration mechanisms among contemporary NLP systems by melding practical experiments with theoretical insights. We fabricate four unique ‘societies’ comprised of LLM agents, where each agent is characterized by a specific ‘trait’ (easy-going or overconfident) and engages in collaboration with a distinct ‘thinking pattern’ (debate or reflection). Through evaluating these multi-agent societies on three benchmark datasets, we discern that certain collaborative strategies not only outshine previous top-tier approaches but also optimize efficiency (using fewer API tokens). Moreover, our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity and consensus reaching, mirroring foundational social psychology theories. In conclusion, we integrate insights from social psychology to contextualize the collaboration of LLM agents, inspiring further investigations into the collaboration mechanism for LLMs. We commit to sharing our code and datasets, hoping to catalyze further research in this promising avenue.
Search
Co-authors
- Ningyu Zhang 2
- Cheng Peng 1
- Mengshu Sun 1
- Xiang Chen 1
- Lei Liang 1
- show all...