Jiyeon Ham


2021

pdf bib
Semantic Alignment with Calibrated Similarity for Multilingual Sentence Embedding
Jiyeon Ham | Eun-Sol Kim
Findings of the Association for Computational Linguistics: EMNLP 2021

Measuring the similarity score between a pair of sentences in different languages is the essential requisite for multilingual sentence embedding methods. Predicting the similarity score consists of two sub-tasks, which are monolingual similarity evaluation and multilingual sentence retrieval. However, conventional methods have mainly tackled only one of the sub-tasks and therefore showed biased performances. In this paper, we suggest a novel and strong method for multilingual sentence embedding, which shows performance improvement on both sub-tasks, consequently resulting in robust predictions of multilingual similarity scores. The suggested method consists of two parts: to learn semantic similarity of sentences in the pivot language and then to extend the learned semantic structure to different languages. To align semantic structures across different languages, we introduce a teacher-student network. The teacher network distills the knowledge of the pivot language to different languages of the student network. During the distillation, the parameters of the teacher network are updated with the slow-moving average. Together with the distillation and the parameter updating, the semantic structure of the student network can be directly aligned across different languages while preserving the ability to measure the semantic similarity. Thus, the multilingual training method drives performance improvement on multilingual similarity evaluation. The suggested model achieves the state-of-the-art performance on extended STS 2017 multilingual similarity evaluation as well as two sub-tasks, which are extended STS 2017 monolingual similarity evaluation and Tatoeba multilingual retrieval in 14 languages.

2020

pdf bib
Jejueo Datasets for Machine Translation and Speech Synthesis
Kyubyong Park | Yo Joong Choe | Jiyeon Ham
Proceedings of the Twelfth Language Resources and Evaluation Conference

Jejueo was classified as critically endangered by UNESCO in 2010. Although diverse efforts to revitalize it have been made, there have been few computational approaches. Motivated by this, we construct two new Jejueo datasets: Jejueo Interview Transcripts (JIT) and Jejueo Single Speaker Speech (JSS). The JIT dataset is a parallel corpus containing 170k+ Jejueo-Korean sentences, and the JSS dataset consists of 10k high-quality audio files recorded by a native Jejueo speaker and a transcript file. Subsequently, we build neural systems of machine translation and speech synthesis using them. All resources are publicly available via our GitHub repository. We hope that these datasets will attract interest of both language and machine learning communities.

pdf bib
KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding
Jiyeon Ham | Yo Joong Choe | Kyubyong Park | Ilji Choi | Hyungjoon Soh
Findings of the Association for Computational Linguistics: EMNLP 2020

Natural language inference (NLI) and semantic textual similarity (STS) are key tasks in natural language understanding (NLU). Although several benchmark datasets for those tasks have been released in English and a few other languages, there are no publicly available NLI or STS datasets in the Korean language. Motivated by this, we construct and release new datasets for Korean NLI and STS, dubbed KorNLI and KorSTS, respectively. Following previous approaches, we machine-translate existing English training sets and manually translate development and test sets into Korean. To accelerate research on Korean NLU, we also establish baselines on KorNLI and KorSTS. Our datasets are publicly available at https://github.com/kakaobrain/KorNLUDatasets.

2019

pdf bib
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
Yo Joong Choe | Jiyeon Ham | Kyubyong Park | Yeoil Yoon
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications

Grammatical error correction can be viewed as a low-resource sequence-to-sequence task, because publicly available parallel corpora are limited. To tackle this challenge, we first generate erroneous versions of large unannotated corpora using a realistic noising function. The resulting parallel corpora are sub-sequently used to pre-train Transformer models. Then, by sequentially applying transfer learning, we adapt these models to the domain and style of the test set. Combined with a context-aware neural spellchecker, our system achieves competitive results in both restricted and low resource tracks in ACL 2019 BEAShared Task. We release all of our code and materials for reproducibility.