Analyses for linking language with psychological factors or behaviors predominately treat linguistic features as a static set, working with a single document per person or aggregating across multiple posts (e.g. on social media) into a single set of features. This limits language to mostly shed light on between-person differences rather than changes in behavior within-person. Here, we collected a novel dataset of daily surveys where participants were asked to describe their experienced well-being and report the number of alcoholic beverages they had within the past 24 hours. Through this data, we first build a multi-level forecasting model that is able to capture within-person change and leverage both the psychological features of the person and daily well-being responses. Then, we propose a longitudinal version of differential language analysis that finds patterns associated with drinking more (e.g. social events) and less (e.g. task-oriented), as well as distinguishing patterns of heavy drinks versus light drinkers.
Anxiety disorders are the most common of mental illnesses, but relatively little is known about how to detect them from language. The primary clinical manifestation of anxiety is worry associated cognitive distortions, which are likely expressed at the discourse-level of semantics. Here, we investigate the development of a modern linguistic assessment for degree of anxiety, specifically evaluating the utility of discourse-level information in addition to lexical-level large language model embeddings. We find that a combined lexico-discourse model outperforms models based solely on state-of-the-art contextual embeddings (RoBERTa), with discourse-level representations derived from Sentence-BERT and DiscRE both providing additional predictive power not captured by lexical-level representations. Interpreting the model, we find that discourse patterns of causal explanations, among others, were used significantly more by those scoring high in anxiety, dovetailing with psychological literature.
Psychological states unfold dynamically; to understand and measure mental health at scale we need to detect and measure these changes from sequences of online posts. We evaluate two approaches to capturing psychological changes in text: the first relies on computing the difference between the embedding of a message with the one that precedes it, the second relies on a “human-aware” multi-level recurrent transformer (HaRT). The mood changes of timeline posts of users were annotated into three classes, ‘ordinary,’ ‘switching’ (positive to negative or vice versa) and ‘escalations’ (increasing in intensity). For classifying these mood changes, the difference-between-embeddings technique – applied to RoBERTa embeddings – showed the highest overall F1 score (0.61) across the three different classes on the test set. The technique particularly outperformed the HaRT transformer (and other baselines) in the detection of switches (F1 = .33) and escalations (F1 = .61).Consistent with the literature, the language use patterns associated with mental-health related constructs in prior work (including depression, stress, anger and anxiety) predicted both mood switches and escalations.
Our ability to limit the future spread of COVID-19 will in part depend on our understanding of the psychological and sociological processes that lead people to follow or reject coronavirus health behaviors. We argue that the virus has taken on heterogeneous meanings in communities across the United States and that these disparate meanings shaped communities’ response to the virus during the early, vital stages of the outbreak in the U.S. Using word embeddings, we demonstrate that counties where residents socially distanced less on average (as measured by residential mobility) more semantically associated the virus in their COVID discourse with concepts of fraud, the political left, and more benign illnesses like the flu. We also show that the different meanings the virus took on in different communities explains a substantial fraction of what we call the “”Trump Gap”, or the empirical tendency for more Trump-supporting counties to socially distance less. This work demonstrates that community-level processes of meaning-making in part determined behavioral responses to the COVID-19 pandemic and that these processes can be measured unobtrusively using Twitter.
In this paper, we present an iterative graph-based approach for the detection of symptoms of COVID-19, the pathology of which seems to be evolving. More generally, the method can be applied to finding context-specific words and texts (e.g. symptom mentions) in large imbalanced corpora (e.g. all tweets mentioning #COVID-19). Given the novelty of COVID-19, we also test if the proposed approach generalizes to the problem of detecting Adverse Drug Reaction (ADR). We find that the approach applied to Twitter data can detect symptom mentions substantially before to their being reported by the Centers for Disease Control (CDC).
The novelty and global scale of the COVID-19 pandemic has lead to rapid societal changes in a short span of time. As government policy and health measures shift, public perceptions and concerns also change, an evolution documented within discourse on social media. We propose a dynamic content-specific LDA topic modeling technique that can help to identify different domains of COVID-specific discourse that can be used to track societal shifts in concerns or views. Our experiments show that these model-derived topics are more coherent than standard LDA topics, and also provide new features that are more helpful in prediction of COVID-19 related outcomes including social mobility and unemployment rate.
We present Differential Language Analysis Toolkit (DLATK), an open-source python package and command-line tool developed for conducting social-scientific language analyses. While DLATK provides standard NLP pipeline steps such as tokenization or SVM-classification, its novel strengths lie in analyses useful for psychological, health, and social science: (1) incorporation of extra-linguistic structured information, (2) specified levels and units of analysis (e.g. document, user, community), (3) statistical metrics for continuous outcomes, and (4) robust, proven, and accurate pipelines for social-scientific prediction problems. DLATK integrates multiple popular packages (SKLearn, Mallet), enables interactive usage (Jupyter Notebooks), and generally follows object oriented principles to make it easy to tie in additional libraries or storage technologies.