Johannes Eschbach-Dymanus
2024
How Effective is Synthetic Data and Instruction Fine-tuning for Translation with Markup using LLMs?
Raj Dabre
|
Haiyue Song
|
Miriam Exel
|
Bianka Buschbeck
|
Johannes Eschbach-Dymanus
|
Hideki Tanaka
Proceedings of the 16th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)
Recent works have shown that prompting large language models (LLMs) is effective for translation with markup where LLMs can simultaneously transfer markup tags while ensuring that the content, both inside and outside tag pairs is correctly translated. However, these works make a rather unrealistic assumption of the existence of high-quality parallel sentences with markup for prompting. Furthermore, the impact of instruction fine-tuning (IFT) in this setting is unknown. In this paper, we provide a study, the first of its kind, focusing on the effectiveness of synthetically created markup data and IFT for translation with markup using LLMs. We focus on translation from English to five European languages, German, French, Dutch, Finnish and Russian, where we show that regardless of few-shot prompting or IFT, synthetic data created via word alignments, while leading to inferior markup transfer compared to using original data with markups, does not negatively impact the translation quality. Furthermore, IFT mainly impacts the translation quality compared to few-shot prompting and has slightly better markup transfer capabilities than the latter. We hope our work will help practitioners make effective decisions on modeling choices for LLM based translation with markup.
Exploring the Effectiveness of LLM Domain Adaptation for Business IT Machine Translation
Johannes Eschbach-Dymanus
|
Frank Essenberger
|
Bianka Buschbeck
|
Miriam Exel
Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)
In this paper, we study the translation abilities of Large Language Models (LLMs) for business IT texts.We are strongly interested in domain adaptation of translation systems, which is essential for accurate and lexically appropriate translation of such texts.Among the open-source models evaluated in a zero- and few-shot setting, we find Llama-2 13B the most promising for domain-specific translation fine-tuning.We investigate the full range of adaptation techniques for LLMs: from prompting, over parameter-efficient fine-tuning to full fine-tuning, and compare to classic neural machine translation (MT) models trained internally at SAP.We provide guidance how to use training budget most effectively for different fine-tuning approaches.We observe that while LLMs can translate on-par with SAP’s MT models on general domain data, it is difficult to close the gap on SAP’s domain-specific data, even with extensive training and carefully curated data.
Search
Fix data
Co-authors
- Bianka Buschbeck 2
- Miriam Exel 2
- Raj Dabre 1
- Frank Essenberger 1
- Haiyue Song 1
- show all...