Joonkee Kim
2024
Re3val: Reinforced and Reranked Generative Retrieval
EuiYul Song
|
Sangryul Kim
|
Haeju Lee
|
Joonkee Kim
|
James Thorne
Findings of the Association for Computational Linguistics: EACL 2024
Generative retrieval models encode pointers to information in a corpus as an index within the model’s parameters. These models serve as part of a larger pipeline, where retrieved information conditions generation for knowledge-intensive NLP tasks. However, we identify two limitations: the generative retrieval does not account for contextual information. Secondly, the retrieval can’t be tuned for the downstream readers as decoding the page title is a non-differentiable operation. This paper introduces Re3val, trained with generative reranking and reinforcement learning using limited data. Re3val leverages context acquired via Dense Passage Retrieval to rerank the retrieved page titles and utilizes REINFORCE to maximize rewards generated by constrained decoding. Additionally, we generate questions from our pre-training dataset to mitigate epistemic uncertainty and bridge the domain gap between the pre-training and fine-tuning datasets. Subsequently, we extract and rerank contexts from the KILT database using the rerank page titles. Upon grounding the top five reranked contexts, Re3val demonstrates the Top 1 KILT scores compared to all other generative retrieval models across five KILT datasets.
2023
HARE: Explainable Hate Speech Detection with Step-by-Step Reasoning
Yongjin Yang
|
Joonkee Kim
|
Yujin Kim
|
Namgyu Ho
|
James Thorne
|
Se-Young Yun
Findings of the Association for Computational Linguistics: EMNLP 2023
With the proliferation of social media, accurate detection of hate speech has become critical to ensure safety online. To combat nuanced forms of hate speech, it is important to identify and thoroughly explain hate speech to help users understand its harmful effects. Recent benchmarks have attempted to tackle this issue by training generative models on free-text annotations of implications in hateful text. However, we find significant reasoning gaps in the existing annotations schemes, which may hinder the supervision of detection models. In this paper, we introduce a hate speech detection framework, **HARE**, which harnesses the reasoning capabilities of large language models (LLMs) to fill these gaps in explanations of hate speech, thus enabling effective supervision of detection models. Experiments on SBIC and Implicit Hate benchmarks show that our method, using model-generated data, consistently outperforms baselines, using existing free-text human annotations. Analysis demonstrates that our method enhances the explanation quality of trained models and improves generalization to unseen datasets. Our code is available at https://github.com/joonkeekim/hare-hate-speech.git.
Search
Fix data
Co-authors
- James Thorne 2
- Namgyu Ho 1
- Yujin Kim 1
- Sangryul Kim 1
- Haeju Lee 1
- show all...