Junru Zhou


2020

pdf bib
Parsing All: Syntax and Semantics, Dependencies and Spans
Junru Zhou | Zuchao Li | Hai Zhao
Findings of the Association for Computational Linguistics: EMNLP 2020

Both syntactic and semantic structures are key linguistic contextual clues, in which parsing the latter has been well shown beneficial from parsing the former. However, few works ever made an attempt to let semantic parsing help syntactic parsing. As linguistic representation formalisms, both syntax and semantics may be represented in either span (constituent/phrase) or dependency, on both of which joint learning was also seldom explored. In this paper, we propose a novel joint model of syntactic and semantic parsing on both span and dependency representations, which incorporates syntactic information effectively in the encoder of neural network and benefits from two representation formalisms in a uniform way. The experiments show that semantics and syntax can benefit each other by optimizing joint objectives. Our single model achieves new state-of-the-art or competitive results on both span and dependency semantic parsing on Propbank benchmarks and both dependency and constituent syntactic parsing on Penn Treebank.

pdf bib
LIMIT-BERT : Linguistics Informed Multi-Task BERT
Junru Zhou | Zhuosheng Zhang | Hai Zhao | Shuailiang Zhang
Findings of the Association for Computational Linguistics: EMNLP 2020

In this paper, we present Linguistics Informed Multi-Task BERT (LIMIT-BERT) for learning language representations across multiple linguistics tasks by Multi-Task Learning. LIMIT-BERT includes five key linguistics tasks: Part-Of-Speech (POS) tags, constituent and dependency syntactic parsing, span and dependency semantic role labeling (SRL). Different from recent Multi-Task Deep Neural Networks (MT-DNN), our LIMIT-BERT is fully linguistics motivated and thus is capable of adopting an improved masked training objective according to syntactic and semantic constituents. Besides, LIMIT-BERT takes a semi-supervised learning strategy to offer the same large amount of linguistics task data as that for the language model training. As a result, LIMIT-BERT not only improves linguistics tasks performance but also benefits from a regularization effect and linguistics information that leads to more general representations to help adapt to new tasks and domains. LIMIT-BERT outperforms the strong baseline Whole Word Masking BERT on both dependency and constituent syntactic/semantic parsing, GLUE benchmark, and SNLI task. Our practice on the proposed LIMIT-BERT also enables us to release a well pre-trained model for multi-purpose of natural language processing tasks once for all.

2019

pdf bib
Head-Driven Phrase Structure Grammar Parsing on Penn Treebank
Junru Zhou | Hai Zhao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Head-driven phrase structure grammar (HPSG) enjoys a uniform formalism representing rich contextual syntactic and even semantic meanings. This paper makes the first attempt to formulate a simplified HPSG by integrating constituent and dependency formal representations into head-driven phrase structure. Then two parsing algorithms are respectively proposed for two converted tree representations, division span and joint span. As HPSG encodes both constituent and dependency structure information, the proposed HPSG parsers may be regarded as a sort of joint decoder for both types of structures and thus are evaluated in terms of extracted or converted constituent and dependency parsing trees. Our parser achieves new state-of-the-art performance for both parsing tasks on Penn Treebank (PTB) and Chinese Penn Treebank, verifying the effectiveness of joint learning constituent and dependency structures. In details, we report 95.84 F1 of constituent parsing and 97.00% UAS of dependency parsing on PTB.