Jushaan Kalra
2023
Implications of Annotation Artifacts in Edge Probing Test Datasets
Sagnik Ray Choudhury
|
Jushaan Kalra
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL)
Edge probing tests are classification tasks that test for grammatical knowledge encoded in token representations coming from contextual encoders such as large language models (LLMs). Many LLM encoders have shown high performance in EP tests, leading to conjectures about their ability to encode linguistic knowledge. However, a large body of research claims that the tests necessarily do not measure the LLM’s capacity to encode knowledge, but rather reflect the classifiers’ ability to learn the problem. Much of this criticism stems from the fact that often the classifiers have very similar accuracy when an LLM vs a random encoder is used. Consequently, several modifications to the tests have been suggested, including information theoretic probes. We show that commonly used edge probing test datasets have various biases including memorization. When these biases are removed, the LLM encoders do show a significant difference from the random ones, even with the simple non-information theoretic probes.
JobXMLC: EXtreme Multi-Label Classification of Job Skills with Graph Neural Networks
Nidhi Goyal
|
Jushaan Kalra
|
Charu Sharma
|
Raghava Mutharaju
|
Niharika Sachdeva
|
Ponnurangam Kumaraguru
Findings of the Association for Computational Linguistics: EACL 2023
Writing a good job description is an important step in the online recruitment process to hire the best candidates. Most recruiters forget to include some relevant skills in the job description. These missing skills affect the performance of recruitment tasks such as job suggestions, job search, candidate recommendations, etc. Existing approaches are limited to contextual modelling, do not exploit inter-relational structures like job-job and job-skill relationships, and are not scalable. In this paper, we exploit these structural relationships using a graph-based approach. We propose a novel skill prediction framework called JobXMLC, which uses graph neural networks with skill attention to predict missing skills using job descriptions. JobXMLC enables joint learning over a job-skill graph consisting of 22.8K entities (jobs and skills) and 650K relationships. We experiment with real-world recruitment datasets to evaluate our proposed approach. We train JobXMLC on 20,298 job descriptions and 2,548 skills within 30 minutes on a single GPU machine. JobXMLC outperforms the state-of-the-art approaches by 6% in precision and 3% in recall. JobXMLC is 18X faster for training task and up to 634X faster in skill prediction on benchmark datasets enabling JobXMLC to scale up on larger datasets.