Justin Chen
2024
ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs
Justin Chen
|
Swarnadeep Saha
|
Mohit Bansal
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Language Models (LLMs) still struggle with natural language reasoning tasks. Motivated by the society of minds (Minsky, 1988), we propose ReConcile, a multi-model multi-agent framework designed as a round table conference among diverse LLM agents. ReConcile enhances collaborative reasoning between LLM agents via multiple rounds of discussion, learning to convince other agents to improve their answers, and employing a confidence-weighted voting mechanism that leads to a better consensus. In each round, ReConcile initiates discussion between agents via a ‘discussion prompt’ that consists of (a) grouped answers and explanations generated by each agent in the previous round, (b) their confidence scores, and (c) demonstrations of answer-rectifying human explanations, used for convincing other agents. Experiments on seven benchmarks demonstrate that ReConcile significantly improves LLMs’ reasoning – both individually and as a team – surpassing prior single-agent and multi-agent baselines by up to 11.4% and even outperforming GPT-4 on three datasets. ReConcile also flexibly incorporates different combinations of agents, including API-based, open-source, and domain-specific models, leading to an 8% improvement on MATH. Finally, we analyze the individual components of ReConcile, demonstrating that the diversity originating from different models is critical to its superior performance.
2023
Location-Aware Visual Question Generation with Lightweight Models
Nicholas Suwono
|
Justin Chen
|
Tun Hung
|
Ting-Hao Huang
|
I-Bin Liao
|
Yung-Hui Li
|
Lun-Wei Ku
|
Shao-Hua Sun
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
This work introduces a novel task, location-aware visual question generation (LocaVQG), which aims to generate engaging questions from data relevant to a particular geographical location. Specifically, we represent such location-aware information with surrounding images and a GPS coordinate. To tackle this task, we present a dataset generation pipeline that leverages GPT-4 to produce diverse and sophisticated questions. Then, we aim to learn a lightweight model that can address the LocaVQG task and fit on an edge device, such as a mobile phone. To this end, we propose a method which can reliably generate engaging questions from location-aware information. Our proposed method outperforms baselines regarding human evaluation (e.g., engagement, grounding, coherence) and automatic evaluation metrics (e.g., BERTScore, ROUGE-2). Moreover, we conduct extensive ablation studies to justify our proposed techniques for both generating the dataset and solving the task.
Search
Fix data
Co-authors
- Mohit Bansal 1
- Ting-Hao Huang 1
- Tun Hung 1
- Lun-Wei Ku 1
- Yung-Hui Li 1
- show all...