Karthic Madanagopal


2023

pdf bib
Reinforced Sequence Training based Subjective Bias Correction
Karthic Madanagopal | James Caverlee
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Subjective bias is ubiquitous on news sites, social media, and knowledge resources like Wikipedia. Many existing methods for subjective bias correction have typically focused on making one-word edits and have been trained over a single (often, noisy) domain. In contrast, we propose a novel reinforced sequence training approach for robust subjective bias correction. Three of the unique characteristics of the approach are: (i) it balances bias neutralization with fluency and semantics preservation through reinforcement learning, to broaden the scope to bias beyond a single word; (ii) it is cross-trained over multiple sources of bias to be more robust to new styles of biased writing that are not seen in the training data for a single domain; and (iii) it is used to fine-tune a large pre-trained transformer model to yield state-of-the-art performance in bias text correction task. Extensive experiments show that the proposed approach results in significant improvements in subjective bias correction versus alternatives.

pdf bib
Bias Neutralization in Non-Parallel Texts: A Cyclic Approach with Auxiliary Guidance
Karthic Madanagopal | James Caverlee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Objectivity is a goal for Wikipedia and many news sites, as well as a guiding principle of many large language models. Indeed, several methods have recently been developed for automatic subjective bias neutralization. These methods, however, typically rely on parallel text for training (i.e. a biased sentence coupled with a non-biased sentence), demonstrate poor transfer to new domains, and can lose important bias-independent context. Toward expanding the reach of bias neutralization, we propose in this paper a new approach called FairBalance. Three of its unique features are: i) a cycle consistent adversarial network enables bias neutralization without the need for parallel text; ii) the model design preserves bias-independent content; and iii) through auxiliary guidance, the model highlights sequences of bias-inducing words, yielding strong results in terms of bias neutralization quality. Extensive experiments demonstrate how FairBalance significantly improves subjective bias neutralization compared to other methods.