Large language models (LLMs) capable of casual conversation have recently become widely available. We hypothesize that users of conversational systems want a more personalized experience, and existing work shows that users are highly receptive to personalized questions (PQs). Question Generation tasks, however, focus on factual questions from textual excerpts. To create a PQ generator, we first identify over 400 real user interests by anonymously aggregating ~39K user models. We then populate prompt templates with these 400 interests and use an LLM to generate PQs customized to user interests. The result is PerQs, a novel corpus of ~19K question/answer pairs. We evaluate PerQs at scale in the unique context of the Alexa Prize. Our results show significant positive effects on perceived conversation quality. We then fine-tune, deploy, and evaluate PerQy, a neural model that generates PQs in real-time. When evaluated against several competitive LLM baselines, PerQy produced the most natural and engaging responses.
Athena 2.0 is an Alexa Prize SocialBot that has been a finalist in the last two Alexa Prize Grand Challenges. One reason for Athena’s success is its novel dialogue management strategy, which allows it to dynamically construct dialogues and responses from component modules, leading to novel conversations with every interaction. Here we describe Athena’s system design and performance in the Alexa Prize during the 20/21 competition. A live demo of Athena as well as video recordings will provoke discussion on the state of the art in conversational AI.
Discourse relation identification has been an active area of research for many years, and the challenge of identifying implicit relations remains largely an unsolved task, especially in the context of an open-domain dialogue system. Previous work primarily relies on a corpora of formal text which is inherently non-dialogic, i.e., news and journals. This data however is not suitable to handle the nuances of informal dialogue nor is it capable of navigating the plethora of valid topics present in open-domain dialogue. In this paper, we designed a novel discourse relation identification pipeline specifically tuned for open-domain dialogue systems. We firstly propose a method to automatically extract the implicit discourse relation argument pairs and labels from a dataset of dialogic turns, resulting in a novel corpus of discourse relation pairs; the first of its kind to attempt to identify the discourse relations connecting the dialogic turns in open-domain discourse. Moreover, we have taken the first steps to leverage the dialogue features unique to our task to further improve the identification of such relations by performing feature ablation and incorporating dialogue features to enhance the state-of-the-art model.
The uptake of deep learning in natural language generation (NLG) led to the release of both small and relatively large parallel corpora for training neural models. The existing data-to-text datasets are, however, aimed at task-oriented dialogue systems, and often thus limited in diversity and versatility. They are typically crowdsourced, with much of the noise left in them. Moreover, current neural NLG models do not take full advantage of large training data, and due to their strong generalizing properties produce sentences that look template-like regardless. We therefore present a new corpus of 7K samples, which (1) is clean despite being crowdsourced, (2) has utterances of 9 generalizable and conversational dialogue act types, making it more suitable for open-domain dialogue systems, and (3) explores the domain of video games, which is new to dialogue systems despite having excellent potential for supporting rich conversations.
Natural language generation lies at the core of generative dialogue systems and conversational agents. We describe an ensemble neural language generator, and present several novel methods for data representation and augmentation that yield improved results in our model. We test the model on three datasets in the restaurant, TV and laptop domains, and report both objective and subjective evaluations of our best model. Using a range of automatic metrics, as well as human evaluators, we show that our approach achieves better results than state-of-the-art models on the same datasets.
We present a new corpus, PersonaBank, consisting of 108 personal stories from weblogs that have been annotated with their Story Intention Graphs, a deep representation of the content of a story. We describe the topics of the stories and the basis of the Story Intention Graph representation, as well as the process of annotating the stories to produce the Story Intention Graphs and the challenges of adapting the tool to this new personal narrative domain. We also discuss how the corpus can be used in applications that retell the story using different styles of tellings, co-tellings, or as a content planner.
Story-telling is a fundamental and prevalent aspect of human social behavior. In the wild, stories are told conversationally in social settings, often as a dialogue and with accompanying gestures and other nonverbal behavior. This paper presents a new corpus, the Story Dialogue with Gestures (SDG) corpus, consisting of 50 personal narratives regenerated as dialogues, complete with annotations of gesture placement and accompanying gesture forms. The corpus includes dialogues generated by human annotators, gesture annotations on the human generated dialogues, videos of story dialogues generated from this representation, video clips of each gesture used in the gesture annotations, and annotations of the original personal narratives with a deep representation of story called a Story Intention Graph. Our long term goal is the automatic generation of story co-tellings as animated dialogues from the Story Intention Graph. We expect this corpus to be a useful resource for researchers interested in natural language generation, intelligent virtual agents, generation of nonverbal behavior, and story and narrative representations.