2024
pdf
bib
abs
Multi-Dialect Vietnamese: Task, Dataset, Baseline Models and Challenges
Nguyen Van Dinh
|
Thanh Chi Dang
|
Luan Thanh Nguyen
|
Kiet Van Nguyen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Vietnamese, a low-resource language, is typically categorized into three primary dialect groups that belong to Northern, Central, and Southern Vietnam. However, each province within these regions exhibits its own distinct pronunciation variations. Despite the existence of various speech recognition datasets, none of them has provided a fine-grained classification of the 63 dialects specific to individual provinces of Vietnam. To address this gap, we introduce Vietnamese Multi-Dialect (ViMD) dataset, a novel comprehensive dataset capturing the rich diversity of 63 provincial dialects spoken across Vietnam. Our dataset comprises 102.56 hours of audio, consisting of approximately 19,000 utterances, and the associated transcripts contain over 1.2 million words. To provide benchmarks and simultaneously demonstrate the challenges of our dataset, we fine-tune state-of-the-art pre-trained models for two downstream tasks: (1) Dialect identification and (2) Speech recognition. The empirical results suggest two implications including the influence of geographical factors on dialects, and the constraints of current approaches in speech recognition tasks involving multi-dialect speech data. Our dataset is available for research purposes.
2023
pdf
bib
abs
ViHOS: Hate Speech Spans Detection for Vietnamese
Phu Gia Hoang
|
Canh Duc Luu
|
Khanh Quoc Tran
|
Kiet Van Nguyen
|
Ngan Luu-Thuy Nguyen
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
The rise in hateful and offensive language directed at other users is one of the adverse side effects of the increased use of social networking platforms. This could make it difficult for human moderators to review tagged comments filtered by classification systems. To help address this issue, we present the ViHOS (Vietnamese Hate and Offensive Spans) dataset, the first human-annotated corpus containing 26k spans on 11k comments. We also provide definitions of hateful and offensive spans in Vietnamese comments as well as detailed annotation guidelines. Besides, we conduct experiments with various state-of-the-art models. Specifically, XLM-R_Large achieved the best F1-scores in Single span detection and All spans detection, while PhoBERT_Large obtained the highest in Multiple spans detection. Finally, our error analysis demonstrates the difficulties in detecting specific types of spans in our data for future research. Our dataset is released on GitHub.
pdf
bib
abs
Revealing Weaknesses of Vietnamese Language Models Through Unanswerable Questions in Machine Reading Comprehension
Son Quoc Tran
|
Phong Nguyen-Thuan Do
|
Kiet Van Nguyen
|
Ngan Luu-Thuy Nguyen
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop
Although the curse of multilinguality significantly restricts the language abilities of multilingual models in monolingual settings, researchers now still have to rely on multilingual models to develop state-of-the-art systems in Vietnamese Machine Reading Comprehension. This difficulty in researching is because of the limited number of high-quality works in developing Vietnamese language models. In order to encourage more work in this research field, we present a comprehensive analysis of language weaknesses and strengths of current Vietnamese monolingual models using the downstream task of Machine Reading Comprehension. From the analysis results, we suggest new directions for developing Vietnamese language models. Besides this main contribution, we also successfully reveal the existence of artifacts in Vietnamese Machine Reading Comprehension benchmarks and suggest an urgent need for new high-quality benchmarks to track the progress of Vietnamese Machine Reading Comprehension. Moreover, we also introduced a minor but valuable modification to the process of annotating unanswerable questions for Machine Reading Comprehension from previous work. Our proposed modification helps improve the quality of unanswerable questions to a higher level of difficulty for Machine Reading Comprehension systems to solve.
pdf
bib
Machine Reading Comprehension for Vietnamese Customer Reviews: Task, Corpus and Baseline Models
Tinh Pham Phuc Do
|
Ngoc Dinh Duy Cao
|
Nhan Thanh Nguyen
|
Tin Van Huynh
|
Kiet Van Nguyen
Proceedings of the 37th Pacific Asia Conference on Language, Information and Computation
2022
pdf
bib
abs
ViNLI: A Vietnamese Corpus for Studies on Open-Domain Natural Language Inference
Tin Van Huynh
|
Kiet Van Nguyen
|
Ngan Luu-Thuy Nguyen
Proceedings of the 29th International Conference on Computational Linguistics
Over a decade, the research field of computational linguistics has witnessed the growth of corpora and models for natural language inference (NLI) for rich-resource languages such as English and Chinese. A large-scale and high-quality corpus is necessary for studies on NLI for Vietnamese, which can be considered a low-resource language. In this paper, we introduce ViNLI (Vietnamese Natural Language Inference), an open-domain and high-quality corpus for evaluating Vietnamese NLI models, which is created and evaluated with a strict process of quality control. ViNLI comprises over 30,000 human-annotated premise-hypothesis sentence pairs extracted from more than 800 online news articles on 13 distinct topics. In this paper, we introduce the guidelines for corpus creation which take the specific characteristics of the Vietnamese language in expressing entailment and contradiction into account. To evaluate the challenging level of our corpus, we conduct experiments with state-of-the-art deep neural networks and pre-trained models on our dataset. The best system performance is still far from human performance (a 14.20% gap in accuracy). The ViNLI corpus is a challenging corpus to accelerate progress in Vietnamese computational linguistics. Our corpus is available publicly for research purposes.
2021
pdf
bib
ViVQA: Vietnamese Visual Question Answering
Khanh Quoc Tran
|
An Trong Nguyen
|
An Tran-Hoai Le
|
Kiet Van Nguyen
Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation
pdf
bib
Monolingual versus multilingual BERTology for Vietnamese extractive multi-document summarization
Huy Quoc To
|
Kiet Van Nguyen
|
Ngan Luu-Thuy Nguyen
|
Anh Gia-Tuan Nguyen
Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation
2020
pdf
bib
A Simple and Efficient Ensemble Classifier Combining Multiple Neural Network Models on Social Media Datasets in Vietnamese
Huy Duc Huynh
|
Hang Thi-Thuy Do
|
Kiet Van Nguyen
|
Ngan Thuy-Luu Nguyen
Proceedings of the 34th Pacific Asia Conference on Language, Information and Computation