Kunal Chawla
2022
When FLUE Meets FLANG: Benchmarks and Large Pretrained Language Model for Financial Domain
Raj Shah
|
Kunal Chawla
|
Dheeraj Eidnani
|
Agam Shah
|
Wendi Du
|
Sudheer Chava
|
Natraj Raman
|
Charese Smiley
|
Jiaao Chen
|
Diyi Yang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Pre-trained language models have shown impressive performance on a variety of tasks and domains. Previous research on financial language models usually employs a generic training scheme to train standard model architectures, without completely leveraging the richness of the financial data. We propose a novel domain specific Financial LANGuage model (FLANG) which uses financial keywords and phrases for better masking, together with span boundary objective and in-filing objective. Additionally, the evaluation benchmarks in the field have been limited. To this end, we contribute the Financial Language Understanding Evaluation (FLUE), an open-source comprehensive suite of benchmarks for the financial domain. These include new benchmarks across 5 NLP tasks in financial domain as well as common benchmarks used in the previous research. Experiments on these benchmarks suggest that our model outperforms those in prior literature on a variety of NLP tasks. Our models, code and benchmark data will be made publicly available on Github and Huggingface.
2020
Semi-supervised Formality Style Transfer using Language Model Discriminator and Mutual Information Maximization
Kunal Chawla
|
Diyi Yang
Findings of the Association for Computational Linguistics: EMNLP 2020
Formality style transfer is the task of converting informal sentences to grammatically-correct formal sentences, which can be used to improve performance of many downstream NLP tasks. In this work, we propose a semi-supervised formality style transfer model that utilizes a language model-based discriminator to maximize the likelihood of the output sentence being formal, which allows us to use maximization of token-level conditional probabilities for training. We further propose to maximize mutual information between source and target styles as our training objective instead of maximizing the regular likelihood that often leads to repetitive and trivial generated responses. Experiments showed that our model outperformed previous state-of-the-art baselines significantly in terms of both automated metrics and human judgement. We further generalized our model to unsupervised text style transfer task, and achieved significant improvements on two benchmark sentiment style transfer datasets.
Search
Fix data
Co-authors
- Diyi Yang 2
- Sudheer Chava 1
- Jiaao Chen 1
- Wendi Du 1
- Dheeraj Eidnani 1
- show all...