Lan Jiang


2022

pdf bib
ROSE: Robust Selective Fine-tuning for Pre-trained Language Models
Lan Jiang | Hao Zhou | Yankai Lin | Peng Li | Jie Zhou | Rui Jiang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Even though the large-scale language models have achieved excellent performances, they suffer from various adversarial attacks.A large body of defense methods has been proposed. However, they are still limited due to redundant attack search spaces and the inability to defend against various types of attacks.In this work, we present a novel fine-tuning approach called RObust SEletive fine-tuning (ROSE) to address this issue.ROSE conducts selective updates when adapting pre-trained models to downstream tasks, filtering out invaluable and unrobust updates of parameters.Specifically, we propose two strategies: the first-order and second-order ROSE for selecting target robust parameters.The experimental results show that ROSE achieves significant improvements in adversarial robustness on various downstream NLP tasks, and the ensemble method even surpasses both variants above.Furthermore, ROSE can be easily incorporated into existing fine-tuning methods to improve their adversarial robustness further.The empirical analysis confirms that ROSE eliminates unrobust spurious updates during fine-tuning, leading to solutions corresponding to flatter and wider optima than the conventional method.Code is available at https://github.com/jiangllan/ROSE.

pdf bib
On Length Divergence Bias in Textual Matching Models
Lan Jiang | Tianshu Lyu | Yankai Lin | Meng Chong | Xiaoyong Lyu | Dawei Yin
Findings of the Association for Computational Linguistics: ACL 2022

Despite the remarkable success deep models have achieved in Textual Matching (TM) tasks, it still remains unclear whether they truly understand language or measure the semantic similarity of texts by exploiting statistical bias in datasets. In this work, we provide a new perspective to study this issue — via the length divergence bias. We find the length divergence heuristic widely exists in prevalent TM datasets, providing direct cues for prediction. To determine whether TM models have adopted such heuristic, we introduce an adversarial evaluation scheme which invalidates the heuristic. In this adversarial setting, all TM models perform worse, indicating they have indeed adopted this heuristic. Through a well-designed probing experiment, we empirically validate that the bias of TM models can be attributed in part to extracting the text length information during training. To alleviate the length divergence bias, we propose an adversarial training method. The results demonstrate we successfully improve the robustness and generalization ability of models at the same time.

2019

pdf bib
Improving Neural Language Models by Segmenting, Attending, and Predicting the Future
Hongyin Luo | Lan Jiang | Yonatan Belinkov | James Glass
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Common language models typically predict the next word given the context. In this work, we propose a method that improves language modeling by learning to align the given context and the following phrase. The model does not require any linguistic annotation of phrase segmentation. Instead, we define syntactic heights and phrase segmentation rules, enabling the model to automatically induce phrases, recognize their task-specific heads, and generate phrase embeddings in an unsupervised learning manner. Our method can easily be applied to language models with different network architectures since an independent module is used for phrase induction and context-phrase alignment, and no change is required in the underlying language modeling network. Experiments have shown that our model outperformed several strong baseline models on different data sets. We achieved a new state-of-the-art performance of 17.4 perplexity on the Wikitext-103 dataset. Additionally, visualizing the outputs of the phrase induction module showed that our model is able to learn approximate phrase-level structural knowledge without any annotation.

pdf bib
MAssistant: A Personal Knowledge Assistant for MOOC Learners
Lan Jiang | Shuhan Hu | Mingyu Huang | Zhichun Wang | Jinjian Yang | Xiaoju Ye | Wei Zheng
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

Massive Open Online Courses (MOOCs) have developed rapidly and attracted large number of learners. In this work, we present MAssistant system, a personal knowledge assistant for MOOC learners. MAssistant helps users to trace the concepts they have learned in MOOCs, and to build their own concept graphs. There are three key components in MAssistant: (i) a large-scale concept graph built from open data sources, which contains concepts in various domains and relations among them; (ii) a browser extension which interacts with learners when they are watching video lectures, and presents important concepts to them; (iii) a web application allowing users to explore their personal concept graphs, which are built based on their learning activities on MOOCs. MAssistant will facilitate the knowledge management task for MOOC learners, and make the learning on MOOCs easier.