Lennart Kloppenburg
2019
Team Kermit-the-frog at SemEval-2019 Task 4: Bias Detection Through Sentiment Analysis and Simple Linguistic Features
Talita Anthonio
|
Lennart Kloppenburg
Proceedings of the 13th International Workshop on Semantic Evaluation
In this paper we describe our participation in the SemEval 2019 shared task on hyperpartisan news detection. We present the system that we submitted for final evaluation and the three approaches that we used: sentiment, bias-laden words and filtered n-gram features. Our submitted model is a Linear SVM that solely relies on the negative sentiment of a document. We achieved an accuracy of 0.621 and a f1 score of 0.694 in the competition, revealing the predictive power of negative sentiment for this task. There was no major improvement by adding or substituting the features of the other two approaches that we tried.
2016
Leveraging Native Data to Correct Preposition Errors in Learners’ Dutch
Lennart Kloppenburg
|
Malvina Nissim
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)
We address the task of automatically correcting preposition errors in learners’ Dutch by modelling preposition usage in native language. Specifically, we build two models exploiting a large corpus of Dutch. The first is a binary model for detecting whether a preposition should be used at all in a given position or not. The second is a multiclass model for selecting the appropriate preposition in case one should be used. The models are tested on native as well as learners data. For the latter we exploit a crowdsourcing strategy to elicit native judgements. On native test data the models perform very well, showing that we can model preposition usage appropriately. However, the evaluation on learners’ data shows that while detecting that a given preposition is wrong is doable reasonably well, detecting the absence of a preposition is a lot more difficult. Observing such results and the data we deal with, we envisage various ways of improving performance, and report them in the final section of this article.
PAT workbench: Annotation and Evaluation of Text and Pictures in Multimodal Instructions
Ielka van der Sluis
|
Lennart Kloppenburg
|
Gisela Redeker
Proceedings of the Workshop on Language Technology Resources and Tools for Digital Humanities (LT4DH)
This paper presents a tool to investigate the design of multimodal instructions (MIs), i.e., instructions that contain both text and pictures. The benefit of including pictures in information presentation has been established, but the characteristics of those pictures and of their textual counterparts and the rela-tion(s) between them have not been researched in a systematic manner. We present the PAT Work-bench, a tool to store, annotate and retrieve MIs based on a validated coding scheme with currently 42 categories that describe instructions in terms of textual features, pictorial elements, and relations be-tween text and pictures. We describe how the PAT Workbench facilitates collaborative annotation and inter-annotator agreement calculation. Future work on the tool includes expanding its functionality and usability by (i) making the MI annotation scheme dynamic for adding relevant features based on empirical evaluations of the MIs, (ii) implementing algorithms for automatic tagging of MI features, and (iii) implementing automatic MI evaluation algorithms based on results obtained via e.g. crowdsourced assessments of MIs.