Li Liu
2024
Joint Pre-Encoding Representation and Structure Embedding for Efficient and Low-Resource Knowledge Graph Completion
Chenyu Qiu
|
Pengjiang Qian
|
Chuang Wang
|
Jian Yao
|
Li Liu
|
Fang Wei
|
Eddie Y.k. Eddie
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Knowledge graph completion (KGC) aims to infer missing or incomplete parts in knowledge graph. The existing models are generally divided into structure-based and description-based models, among description-based models often require longer training and inference times as well as increased memory usage. In this paper, we propose Pre-Encoded Masked Language Model (PEMLM) to efficiently solve KGC problem. By encoding textual descriptions into semantic representations before training, the necessary resources are significantly reduced. Furthermore, we introduce a straightforward but effective fusion framework to integrate structural embedding with pre-encoded semantic description, which enhances the model’s prediction performance on 1-N relations. The experimental results demonstrate that our proposed strategy attains state-of-the-art performance on the WN18RR (MRR+5.4% and Hits@1+6.4%) and UMLS datasets. Compared to existing models, we have increased inference speed by 30x and reduced training memory by approximately 60%.
Assessing BERT’s sensitivity to idiomaticity
Li Liu
|
Francois Lareau
Proceedings of the Joint Workshop on Multiword Expressions and Universal Dependencies (MWE-UD) @ LREC-COLING 2024
BERT-like language models have been demonstrated to capture the idiomatic meaning of multiword expressions. Linguists have also shown that idioms have varying degrees of idiomaticity. In this paper, we assess CamemBERT’s sensitivity to the degree of idiomaticity within idioms, as well as the dependency of this sensitivity on part of speech and idiom length. We used a demasking task on tokens from 3127 idioms and 22551 tokens corresponding to simple lexemes taken from the French Lexical Network (LN-fr), and observed that CamemBERT performs distinctly on tokens embedded within idioms compared to simple ones. When demasking tokens within idioms, the model is not proficient in discerning their level of idiomaticity. Moreover, regardless of idiomaticity, CamemBERT excels at handling function words. The length of idioms also impacts CamemBERT’s performance to a certain extent. The last two observations partly explain the difference between the model’s performance on idioms versus simple lexemes. We conclude that the model treats idioms differently from simple lexemes, but that it does not capture the difference in compositionality between subclasses of idioms.
2016
Extraction automatique de contour de lèvre à partir du modèle CLNF (Automatic lip contour extraction using CLNF model)
Li Liu
|
Gang Feng
|
Denis Beautemps
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 1 : JEP
Dans cet article nous proposons une nouvelle solution pour extraire le contour interne des lèvres d’un locuteur sans utiliser d’artifices. La méthode s’appuie sur un algorithme récent d’extraction du contour de visage développé en vision par ordinateur, CLNF pour Constrained Local Neural Field. Cet algorithme fournit en particulier 8 points caractéristiques délimitant le contour interne des lèvres. Appliqué directement à nos données audio-visuelles du locuteur, le CLNF donne de très bons résultats dans environ 70% des cas. Des erreurs subsistent cependant pour le reste des cas. Nous proposons des solutions pour estimer un contour raisonnable des lèvres à partir des points fournis par CLNF utilisant l’interpolation par spline permettant de corriger ses erreurs et d’extraire correctement les paramètres labiaux classiques. Les évaluations sur une base de données de 179 images confirment les performances de notre algorithme.
Search
Fix data
Co-authors
- Denis Beautemps 1
- Eddie Y.k. Eddie 1
- Gang Feng 1
- François Lareau 1
- Pengjiang Qian 1
- show all...