Liat Schiff


2023

pdf bib
OpenAsp: A Benchmark for Multi-document Open Aspect-based Summarization
Shmuel Amar | Liat Schiff | Ori Ernst | Asi Shefer | Ori Shapira | Ido Dagan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The performance of automatic summarization models has improved dramatically in recent years. Yet, there is still a gap in meeting specific information needs of users in real-world scenarios, particularly when a targeted summary is sought, such as in the useful aspect-based summarization setting targeted in this paper. Previous datasets and studies for this setting have predominantly concentrated on a limited set of pre-defined aspects, focused solely on single document inputs, or relied on synthetic data. To advance research on more realistic scenarios, we introduce OpenAsp, a benchmark for multi-document open aspect-based summarization. This benchmark is created using a novel and cost-effective annotation protocol, by which an open aspect dataset is derived from existing generic multi-document summarization datasets. We analyze the properties of OpenAsp showcasing its high-quality content. Further, we show that the realistic open-aspect setting realized in OpenAsp poses a challenge for current state-of-the-art summarization models, as well as for large language models.