Licheng Zong
2024
SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation
Minda Hu
|
Licheng Zong
|
Hongru Wang
|
Jingyan Zhou
|
Jingjing Li
|
Yichen Gao
|
Kam-Fai Wong
|
Yu Li
|
Irwin King
Findings of the Association for Computational Linguistics: EMNLP 2024
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG). However, existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries, resulting in sub-optimal performance. To address these limitations, we propose a novel plug-and-play LLM-based retrieval method called Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm. By combining the reasoning capabilities of LLMs with the effectiveness of tree search, SeRTS boosts the zero-shot performance of retrieving high-quality and informative results for RAG. We further enhance retrieval performance by fine-tuning LLMs with Proximal Policy Optimization (PPO) objectives using the trajectories collected by SeRTS as feedback. Controlled experiments using the BioASQ-QA dataset with GPT-3.5-Turbo and LLama2-7b demonstrate that our method significantly improves the performance of the BM25 retriever and surpasses the strong baseline of self-reflection in both efficiency and scalability. Moreover, SeRTS generates higher-quality feedback for PPO training than self-reflection. Our proposed method effectively adapts LLMs to document retrieval tasks, enhancing their ability to retrieve highly relevant documents for RAG in the context of medical knowledge queries. This work presents a significant step forward in leveraging LLMs for accurate and comprehensive biomedical question answering.
Search
Fix data
Co-authors
- Yichen Gao 1
- Minda Hu 1
- Irwin King 1
- Jingjing Li 1
- Yu Li (李豫) 1
- show all...