Liming Xiao


2023

pdf bib
CCL23-Eval任务4总结报告:第三届中文空间语义理解评测(Overview of CCL23-Eval Task 4:The 3rd Chinese Spatial Cognition Evaluation)
Liming Xiao (肖力铭) | Weidong Zhan (詹卫东) | Zhifang Sui (穗志方) | Yuhang Qin (秦宇航) | Chunhui Sun (孙春晖) | Dan Xing (邢丹) | Nan Li (李楠) | Fangwei Zhu (祝方韦) | Peiyi Wang (王培懿)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“第三届中文空间语义理解评测任务(SpaCE2023)旨在测试机器的空间语义理解能力,包括三个子任务:(1)空间信息异常识别任务;(2)空间语义角色标注任务;(3)空间场景异同判断任务。本届评测在SpaCE2022的基础上,优化了子任务一和子任务二的任务设计,并提出了子任务三这一全新的评测任务。最终有1支队伍提交参赛结果,并且在子任务一上的成绩超过了基线模型。本文还报告了大语言模型ChatGPT在SpaCE2023三个子任务上的表现,结合问题提出指令设计可改进的方向。”

2022

pdf bib
Align-smatch: A Novel Evaluation Method for Chinese Abstract Meaning Representation Parsing based on Alignment of Concept and Relation
Liming Xiao | Bin Li | Zhixing Xu | Kairui Huo | Minxuan Feng | Junsheng Zhou | Weiguang Qu
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Abstract Meaning Representation is a sentence-level meaning representation, which abstracts the meaning of sentences into a rooted acyclic directed graph. With the continuous expansion of Chinese AMR corpus, more and more scholars have developed parsing systems to automatically parse sentences into Chinese AMR. However, the current parsers can’t deal with concept alignment and relation alignment, let alone the evaluation methods for AMR parsing. Therefore, to make up for the vacancy of Chinese AMR parsing evaluation methods, based on AMR evaluation metric smatch, we have improved the algorithm of generating triples so that to make it compatible with concept alignment and relation alignment. Finally, we obtain a new integrity metric align-smatch for paring evaluation. A comparative research then was conducted on 20 manually annotated AMR and gold AMR, with the result that align-smatch works well in alignments and more robust in evaluating arcs. We also put forward some fine-grained metric for evaluating concept alignment, relation alignment and implicit concepts, in order to further measure parsers’ performance in subtasks.

2020

pdf bib
Integration of Automatic Sentence Segmentation and Lexical Analysis of Ancient Chinese based on BiLSTM-CRF Model
Ning Cheng | Bin Li | Liming Xiao | Changwei Xu | Sijia Ge | Xingyue Hao | Minxuan Feng
Proceedings of LT4HALA 2020 - 1st Workshop on Language Technologies for Historical and Ancient Languages

The basic tasks of ancient Chinese information processing include automatic sentence segmentation, word segmentation, part-of-speech tagging and named entity recognition. Tasks such as lexical analysis need to be based on sentence segmentation because of the reason that a plenty of ancient books are not punctuated. However, step-by-step processing is prone to cause multi-level diffusion of errors. This paper designs and implements an integrated annotation system of sentence segmentation and lexical analysis. The BiLSTM-CRF neural network model is used to verify the generalization ability and the effect of sentence segmentation and lexical analysis on different label levels on four cross-age test sets. Research shows that the integration method adopted in ancient Chinese improves the F1-score of sentence segmentation, word segmentation and part of speech tagging. Based on the experimental results of each test set, the F1-score of sentence segmentation reached 78.95, with an average increase of 3.5%; the F1-score of word segmentation reached 85.73%, with an average increase of 0.18%; and the F1-score of part-of-speech tagging reached 72.65, with an average increase of 0.35%.