Linghao Jin
2024
Light-weight Fine-tuning Method for Defending Adversarial Noise in Pre-trained Medical Vision-Language Models
Xu Han
|
Linghao Jin
|
Xuezhe Ma
|
Xiaofeng Liu
Findings of the Association for Computational Linguistics: EMNLP 2024
Fine-tuning pre-trained Vision-Language Models (VLMs) has shown remarkable capabilities in medical image and textual depiction synergy. Nevertheless, many pre-training datasets are restricted by patient privacy concerns, potentially containing noise that can adversely affect downstream performance. Moreover, the growing reliance on multi-modal generation exacerbates this issue because of its susceptibility to adversarial attacks. To investigate how VLMs trained on adversarial noisy data perform on downstream medical tasks, we first craft noisy upstream datasets using multi-modal adversarial attacks. Through our comprehensive analysis, we unveil that moderate noise enhances model robustness and transferability, but increasing noise levels negatively impact downstream task performance. To mitigate this issue, we propose rectify adversarial noise (RAN) framework, a recipe designed to effectively defend adversarial attacks and rectify the influence of upstream noise during fine-tuning.
2023
Challenges in Context-Aware Neural Machine Translation
Linghao Jin
|
Jacqueline He
|
Jonathan May
|
Xuezhe Ma
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Context-aware neural machine translation, a paradigm that involves leveraging information beyond sentence-level context to resolve inter-sentential discourse dependencies and improve document-level translation quality, has given rise to a number of recent techniques. However, despite well-reasoned intuitions, most context-aware translation models show only modest improvements over sentence-level systems. In this work, we investigate and present several core challenges that impede progress within the field, relating to discourse phenomena, context usage, model architectures, and document-level evaluation. To address these problems, we propose a more realistic setting for document-level translation, called paragraph-to-paragraph (PARA2PARA) translation, and collect a new dataset of Chinese-English novels to promote future research.
MAX-ISI System at WMT23 Discourse-Level Literary Translation Task
Li An
|
Linghao Jin
|
Xuezhe Ma
Proceedings of the Eighth Conference on Machine Translation
This paper describes our translation systems for the WMT23 shared task. We participated in the discourse-level literary translation task - constrained track. In our methodology, we conduct a comparative analysis between the conventional Transformer model and the recently introduced MEGA model, which exhibits enhanced capabilities in modeling long-range sequences compared to the traditional Transformers. To explore whether language models can more effectively harness document-level context using paragraph-level data, we took the approach of aggregating sentences into paragraphs from the original literary dataset provided by the organizers. This paragraph-level data was utilized in both the Transformer and MEGA models. To ensure a fair comparison across all systems, we employed a sentence-alignment strategy to reverse our translation results from the paragraph-level back to the sentence-level alignment. Finally, our evaluation process encompassed sentence-level metrics such as BLEU, as well as two document-level metrics: d-BLEU and BlonDe.
Search
Co-authors
- Xuezhe Ma 3
- Jacqueline He 1
- Jonathan May 1
- Xu Han 1
- Xiaofeng Liu 1
- show all...
- Li An 1