Liu Pai
2024
A Survey on Open Information Extraction from Rule-based Model to Large Language Model
Liu Pai
|
Wenyang Gao
|
Wenjie Dong
|
Lin Ai
|
Ziwei Gong
|
Songfang Huang
|
Li Zongsheng
|
Ehsan Hoque
|
Julia Hirschberg
|
Yue Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024
Open Information Extraction (OpenIE) represents a crucial NLP task aimed at deriving structured information from unstructured text, unrestricted by relation type or domain. This survey paper provides an overview of OpenIE technologies spanning from 2007 to 2024, emphasizing a chronological perspective absent in prior surveys. It examines the evolution of task settings in OpenIE to align with the advances in recent technologies. The paper categorizes OpenIE approaches into rule-based, neural, and pre-trained large language models, discussing each within a chronological framework. Additionally, it highlights prevalent datasets and evaluation metrics currently in use. Building on this extensive review, this paper systematically reviews the evolution of task settings, data, evaluation metrics, and methodologies in the era of large language models, highlighting their mutual influence, comparing their capabilities, and examining their implications for open challenges and future research directions.
2020
QiaoNing at SemEval-2020 Task 4: Commonsense Validation and Explanation System Based on Ensemble of Language Model
Liu Pai
Proceedings of the Fourteenth Workshop on Semantic Evaluation
The ability of common sense validation and explanation is very important for most models. Most obviously, this will directly affect the rationality of the generated model output. The large amount and diversity of common sense poses great challenges to this task. In addition, many common sense expressions are obscure, thus we need to understand the meaning contained in the vocabulary in order to judge correctly, which further increases the model’s requirements for the accuracy of word representation. The current neural network models are often data-driven, while the annotated data is often limited and requires a lot of manual labeling. In such case, we proposed transfer learning to handle this challenge. From our experiments, we can draw the following three main conclusions: a) Neural language model fully qualified for commonsense validation and explanation. We attribute this to the powerful word and sentence representation capabilities of language models. b) The inconsistency of task of pre-training and fine-tuning will badly hurt the performance. c) A larger amount of corpus and more parameters will enhance the common sense of the model. At the same time, the content of the corpus is equally important.
Search
Fix data
Co-authors
- Lin Ai 1
- Wenjie Dong 1
- Wenyang Gao (高文炀) 1
- Ziwei Gong 1
- Julia Hirschberg 1
- show all...