We present RICHES, a novel approach that interleaves retrieval with sequence generation tasks. RICHES offers an alternative to conventional RAG systems by eliminating the need for separate retriever and generator. It retrieves documents by directly decoding their contents, constrained on the corpus. Unifying retrieval with generation allows us to adapt to diverse new tasks via prompting alone. RICHES can work with any Instruction-tuned model, without additional training. It provides attributed evidence, supports multi-hop retrievals and interleaves thoughts to plan on what to retrieve next, all within a single decoding pass of the LLM. We demonstrate the strong performance of RICHES across ODQA tasks including attributed and multi-hop QA.
While many methods purport to explain predictions by highlighting salient features, what aims these explanations serve and how they ought to be evaluated often go unstated. In this work, we introduce a framework to quantify the value of explanations via the accuracy gains that they confer on a student model trained to simulate a teacher model. Crucially, the explanations are available to the student during training, but are not available at test time. Compared with prior proposals, our approach is less easily gamed, enabling principled, automatic, model-agnostic evaluation of attributions. Using our framework, we compare numerous attribution methods for text classification and question answering, and observe quantitative differences that are consistent (to a moderate to high degree) across different student model architectures and learning strategies.1
A question answering system that in addition to providing an answer provides an explanation of the reasoning that leads to that answer has potential advantages in terms of debuggability, extensibility, and trust. To this end, we propose QED, a linguistically informed, extensible framework for explanations in question answering. A QED explanation specifies the relationship between a question and answer according to formal semantic notions such as referential equality, sentencehood, and entailment. We describe and publicly release an expert-annotated dataset of QED explanations built upon a subset of the Google Natural Questions dataset, and report baseline models on two tasks—post- hoc explanation generation given an answer, and joint question answering and explanation generation. In the joint setting, a promising result suggests that training on a relatively small amount of QED data can improve question answering. In addition to describing the formal, language-theoretic motivations for the QED approach, we describe a large user study showing that the presence of QED explanations significantly improves the ability of untrained raters to spot errors made by a strong neural QA baseline.
Past research has demonstrated that large neural language models (LMs) encode surprising amounts of factual information: however, augmenting or modifying this information requires modifying a corpus and retraining, which is computationally expensive. To address this problem, we develop a neural LM that includes an interpretable neuro-symbolic KB in the form of a “fact memory”. Each element of the fact memory is formed from a triple of vectors, where each vector corresponds to a KB entity or relation. Our LM improves performance on knowledge-intensive question-answering tasks, sometimes dramatically, including a 27 point increase in one setting of WebQuestionsSP over a state-of-the-art open-book model, despite using 5% of the parameters. Most interestingly, we demonstrate that the model can be modified, without any re-training, by updating the fact memory.
We focus on the problem of capturing declarative knowledge about entities in the learned parameters of a language model. We introduce a new model—Entities as Experts (EaE)—that can access distinct memories of the entities mentioned in a piece of text. Unlike previous efforts to integrate entity knowledge into sequence models, EaE’s entity representations are learned directly from text. We show that EaE’s learned representations capture sufficient knowledge to answer TriviaQA questions such as “Which Dr. Who villain has been played by Roger Delgado, Anthony Ainley, Eric Roberts?”, outperforming an encoder-generator Transformer model with 10x the parameters on this task. According to the Lama knowledge probes, EaE contains more factual knowledge than a similar sized Bert, as well as previous approaches that integrate external sources of entity knowledge. Because EaE associates parameters with specific entities, it only needs to access a fraction of its parameters at inference time, and we show that the correct identification and representation of entities is essential to EaE’s performance.
Natural language inference (NLI) data has proven useful in benchmarking and, especially, as pretraining data for tasks requiring language understanding. However, the crowdsourcing protocol that was used to collect this data has known issues and was not explicitly optimized for either of these purposes, so it is likely far from ideal. We propose four alternative protocols, each aimed at improving either the ease with which annotators can produce sound training examples or the quality and diversity of those examples. Using these alternatives and a fifth baseline protocol, we collect and compare five new 8.5k-example training sets. In evaluations focused on transfer learning applications, our results are solidly negative, with models trained on our baseline dataset yielding good transfer performance to downstream tasks, but none of our four new methods (nor the recent ANLI) showing any improvements over that baseline. In a small silver lining, we observe that all four new protocols, especially those where annotators edit *pre-filled* text boxes, reduce previously observed issues with annotation artifacts.
General purpose relation extractors, which can model arbitrary relations, are a core aspiration in information extraction. Efforts have been made to build general purpose extractors that represent relations with their surface forms, or which jointly embed surface forms with relations from an existing knowledge graph. However, both of these approaches are limited in their ability to generalize. In this paper, we build on extensions of Harris’ distributional hypothesis to relations, as well as recent advances in learning text representations (specifically, BERT), to build task agnostic relation representations solely from entity-linked text. We show that these representations significantly outperform previous work on exemplar based relation extraction (FewRel) even without using any of that task’s training data. We also show that models initialized with our task agnostic representations, and then tuned on supervised relation extraction datasets, significantly outperform the previous methods on SemEval 2010 Task 8, KBP37, and TACRED