Maartje Ter Hoeve


2024

pdf bib
On the Limited Generalization Capability of the Implicit Reward Model Induced by Direct Preference Optimization
Yong Lin | Skyler Seto | Maartje Ter Hoeve | Katherine Metcalf | Barry-John Theobald | Xuan Wang | Yizhe Zhang | Chen Huang | Tong Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

Reinforcement Learning from Human Feedback (RLHF) is an effective approach for aligning language models to human preferences. Central to RLHF is learning a reward function for scoring human preferences. Two main approaches for learning a reward model are 1) training an EXplicit Reward Model (EXRM) as in RLHF, and 2) using an implicit reward learned from preference data through methods such as Direct Preference Optimization (DPO). Prior work has shown that the implicit reward model of DPO (denoted as DPORM) can approximate an EXRM on the limit infinite samples. However, it is unclear how effective is DPORM in practice. DPORM’s effectiveness directly implies the optimality of learned policy of DPO and also has practical implication for more advanced alignment methods, such as iterative DPO. We compare the accuracy at distinguishing preferred and rejected answers using both DPORM and EXRM. Our findings indicate that even though DPORM can fit the training dataset, it generalizes less effective than EXRM, especially when the validation datasets contain distributional shifts. Across five out-of-distribution settings, DPORM has a mean drop in accuracy of 3% and a maximum drop of 7%. These findings highlight that DPORM has limited generalization ability and substantiates the integration of an explicit reward model in iterative DPO approaches.

2022

pdf bib
What Makes a Good and Useful Summary? Incorporating Users in Automatic Summarization Research
Maartje Ter Hoeve | Julia Kiseleva | Maarten de Rijke
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Automatic text summarization has enjoyed great progress over the years and is used in numerous applications, impacting the lives of many. Despite this development, there is little research that meaningfully investigates how the current research focus in automatic summarization aligns with users’ needs. To bridge this gap, we propose a survey methodology that can be used to investigate the needs of users of automatically generated summaries. Importantly, these needs are dependent on the target group. Hence, we design our survey in such a way that it can be easily adjusted to investigate different user groups. In this work we focus on university students, who make extensive use of summaries during their studies. We find that the current research directions of the automatic summarization community do not fully align with students’ needs. Motivated by our findings, we present ways to mitigate this mismatch in future research on automatic summarization: we propose research directions that impact the design, the development and the evaluation of automatically generated summaries.