Maja Miličević Petrović

Also published as: Maja Milicević Petrović


2023

pdf bib
!Translate: When You Cannot Cook Up a Translation, Explain
Federico Garcea | Margherita Martinelli | Maja Milicević Petrović | Alberto Barrón-Cedeño
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

In the domain of cuisine, both dishes and ingredients tend to be heavily rooted in the local context they belong to. As a result, the associated terms are often realia tied to specific cultures and languages. This causes difficulties for non-speakers of the local language and ma- chine translation (MT) systems alike, as it implies a lack of the concept and/or of a plausible translation. MT typically opts for one of two alternatives: keeping the source language terms untranslated or relying on a hyperonym/near-synonym in the target language, provided one exists. !Translate proposes a better alternative: explaining. Given a cuisine entry such as a restaurant menu item, we identify culture-specific terms and enrich the output of the MT system with automatically retrieved definitions of the non-translatable terms in the target language, making the translation more actionable for the final user.

2022

pdf bib
Cross-Level Semantic Similarity for Serbian Newswire Texts
Vuk Batanović | Maja Miličević Petrović
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Cross-Level Semantic Similarity (CLSS) is a measure of the level of semantic overlap between texts of different lengths. Although this problem was formulated almost a decade ago, research on it has been sparse, and limited exclusively to the English language. In this paper, we present the first CLSS dataset in another language, in the form of CLSS.news.sr – a corpus of 1000 phrase-sentence and 1000 sentence-paragraph newswire text pairs in Serbian, manually annotated with fine-grained semantic similarity scores using a 0–4 similarity scale. We describe the methodology of data collection and annotation, and compare the resulting corpus to its preexisting counterpart in English, SemEval CLSS, following up with a preliminary linguistic analysis of the newly created dataset. State-of-the-art pre-trained language models are then fine-tuned and evaluated on the CLSS task in Serbian using the produced data, and their settings and results are discussed. The CLSS.news.sr corpus and the guidelines used in its creation are made publicly available.