Manuel Moussallam
2021
Modéliser la perception des genres musicaux à travers différentes cultures à partir de ressources linguistiques (Modeling the Music Genre Perception across Language-Bound Cultures )
Elena V. Epure
|
Guillaume Salha-Galvan
|
Manuel Moussallam
|
Romain Hennequin
Actes de la 28e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale
Nous résumons nos travaux de recherche, présentés à la conférence EMNLP 2020 et portant sur la modélisation de la perception des genres musicaux à travers différentes cultures, à partir de représentations sémantiques spécifiques à différentes langues.
2020
Modeling the Music Genre Perception across Language-Bound Cultures
Elena V. Epure
|
Guillaume Salha
|
Manuel Moussallam
|
Romain Hennequin
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
The music genre perception expressed through human annotations of artists or albums varies significantly across language-bound cultures. These variations cannot be modeled as mere translations since we also need to account for cultural differences in the music genre perception. In this work, we study the feasibility of obtaining relevant cross-lingual, culture-specific music genre annotations based only on language-specific semantic representations, namely distributed concept embeddings and ontologies. Our study, focused on six languages, shows that unsupervised cross-lingual music genre annotation is feasible with high accuracy, especially when combining both types of representations. This approach of studying music genres is the most extensive to date and has many implications in musicology and music information retrieval. Besides, we introduce a new, domain-dependent cross-lingual corpus to benchmark state of the art multilingual pre-trained embedding models.