Perceptions of hate can vary greatly across cultural contexts. Hate speech (HS) datasets, however, have traditionally been developed by language. This hides potential cultural biases, as one language may be spoken in different countries home to different cultures. In this work, we evaluate cultural bias in HS datasets by leveraging two interrelated cultural proxies: language and geography. We conduct a systematic survey of HS datasets in eight languages and confirm past findings on their English-language bias, but also show that this bias has been steadily decreasing in the past few years. For three geographically-widespread languages—English, Arabic and Spanish—we then leverage geographical metadata from tweets to approximate geo-cultural contexts by pairing language and country information. We find that HS datasets for these languages exhibit a strong geo-cultural bias, largely overrepresenting a handful of countries (e.g., US and UK for English) relative to their prominence in both the broader social media population and the general population speaking these languages. Based on these findings, we formulate recommendations for the creation of future HS datasets.
To address the global issue of online hate, hate speech detection (HSD) systems are typically developed on datasets from the United States, thereby failing to generalize to English dialects from the Majority World. Furthermore, HSD models are often evaluated on non-representative samples, raising concerns about overestimating model performance in real-world settings. In this work, we introduce NaijaHate, the first dataset annotated for HSD which contains a representative sample of Nigerian tweets. We demonstrate that HSD evaluated on biased datasets traditionally used in the literature consistently overestimates real-world performance by at least two-fold. We then propose NaijaXLM-T, a pretrained model tailored to the Nigerian Twitter context, and establish the key role played by domain-adaptive pretraining and finetuning in maximizing HSD performance. Finally, owing to the modest performance of HSD systems in real-world conditions, we find that content moderators would need to review about ten thousand Nigerian tweets flagged as hateful daily to moderate 60% of all hateful content, highlighting the challenges of moderating hate speech at scale as social media usage continues to grow globally. Taken together, these results pave the way towards robust HSD systems and a better protection of social media users from hateful content in low-resource settings.
Detecting disclosures of individuals’ employment status on social media can provide valuable information to match job seekers with suitable vacancies, offer social protection, or measure labor market flows. However, identifying such personal disclosures is a challenging task due to their rarity in a sea of social media content and the variety of linguistic forms used to describe them. Here, we examine three Active Learning (AL) strategies in real-world settings of extreme class imbalance, and identify five types of disclosures about individuals’ employment status (e.g. job loss) in three languages using BERT-based classification models. Our findings show that, even under extreme imbalance settings, a small number of AL iterations is sufficient to obtain large and significant gains in precision, recall, and diversity of results compared to a supervised baseline with the same number of labels. We also find that no AL strategy consistently outperforms the rest. Qualitative analysis suggests that AL helps focus the attention mechanism of BERT on core terms and adjust the boundaries of semantic expansion, highlighting the importance of interpretable models to provide greater control and visibility into this dynamic learning process.