Matthew B. Blaschko
2024
A Generic Method for Fine-grained Category Discovery in Natural Language Texts
Chang Tian
|
Matthew B. Blaschko
|
Wenpeng Yin
|
Mingzhe Xing
|
Yinliang Yue
|
Marie-Francine Moens
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Fine-grained category discovery using only coarse-grained supervision is a cost-effective yet challenging task. Previous training methods focus on aligning query samples with positive samples and distancing them from negatives. They often neglect intra-category and inter-category semantic similarities of fine-grained categories when navigating sample distributions in the embedding space. Furthermore, some evaluation techniques that rely on pre-collected test samples are inadequate for real-time applications. To address these shortcomings, we introduce a method that successfully detects fine-grained clusters of semantically similar texts guided by a novel objective function. The method uses semantic similarities in a logarithmic space to guide sample distributions in the Euclidean space and to form distinct clusters that represent fine-grained categories. We also propose a centroid inference mechanism to support real-time applications. The efficacy of the method is both theoretically justified and empirically confirmed on three benchmark tasks. The proposed objective function is integrated in multiple contrastive learning based neural models. Its results surpass existing state-of-the-art approaches in terms of Accuracy, Adjusted Rand Index and Normalized Mutual Information of the detected fine-grained categories. Code and data are publicly available at https://github.com/changtianluckyforever/F-grained-STAR.
FastMem: Fast Memorization of Prompt Improves Context Awareness of Large Language Models
Junyi Zhu
|
Shuochen Liu
|
Yu Yu
|
Bo Tang
|
Yibo Yan
|
Zhiyu Li
|
Feiyu Xiong
|
Tong Xu
|
Matthew B. Blaschko
Findings of the Association for Computational Linguistics: EMNLP 2024
Large language models (LLMs) excel in generating coherent text, but they often struggle with context awareness, leading to inaccuracies in tasks requiring faithful adherence to provided information. We introduce FastMem, a novel method designed to enhance instruction fine-tuned LLMs’ context awareness through fast memorization of the prompt. FastMem maximizes the likelihood of the prompt before inference by updating only the last Feed-Forward Network (FFN) module. This targeted approach ensures efficient optimization without overfitting, significantly improving the model’s ability to comprehend and accurately follow the context. Our experiments demonstrate substantial gains in reading comprehension, text summarization and adherence to output structures. For instance, FastMem improves the accuracy of Llama 3-8B-Inst on the NQ-SWAP dataset from 59.1% to 71.6%, and reduces the output structure failure rate of Qwen 1.5-4B-Chat from 34.9% to 25.5%. Extensive experimental results highlight FastMem’s potential to offer a robust solution to enhance the reliability and accuracy of LLMs in various applications. Our code is available at: https://github.com/IAAR-Shanghai/FastMem.
Search
Co-authors
- Chang Tian 1
- Wenpeng Yin 1
- Mingzhe Xing 1
- Yinliang Yue 1
- Marie Francine Moens 1
- show all...