Matthew Collinson
2019
A Dual-Attention Hierarchical Recurrent Neural Network for Dialogue Act Classification
Ruizhe Li
|
Chenghua Lin
|
Matthew Collinson
|
Xiao Li
|
Guanyi Chen
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)
Recognising dialogue acts (DA) is important for many natural language processing tasks such as dialogue generation and intention recognition. In this paper, we propose a dual-attention hierarchical recurrent neural network for DA classification. Our model is partially inspired by the observation that conversational utterances are normally associated with both a DA and a topic, where the former captures the social act and the latter describes the subject matter. However, such a dependency between DAs and topics has not been utilised by most existing systems for DA classification. With a novel dual task-specific attention mechanism, our model is able, for utterances, to capture information about both DAs and topics, as well as information about the interactions between them. Experimental results show that by modelling topic as an auxiliary task, our model can significantly improve DA classification, yielding better or comparable performance to the state-of-the-art method on three public datasets.
A Stable Variational Autoencoder for Text Modelling
Ruizhe Li
|
Xiao Li
|
Chenghua Lin
|
Matthew Collinson
|
Rui Mao
Proceedings of the 12th International Conference on Natural Language Generation
Variational Autoencoder (VAE) is a powerful method for learning representations of high-dimensional data. However, VAEs can suffer from an issue known as latent variable collapse (or KL term vanishing), where the posterior collapses to the prior and the model will ignore the latent codes in generative tasks. Such an issue is particularly prevalent when employing VAE-RNN architectures for text modelling (Bowman et al., 2016; Yang et al., 2017). In this paper, we present a new architecture called Full-Sampling-VAE-RNN, which can effectively avoid latent variable collapse. Compared to the general VAE-RNN architectures, we show that our model can achieve much more stable training process and can generate text with significantly better quality.
Search