Matthew Hausknecht
2021
Reading and Acting while Blindfolded: The Need for Semantics in Text Game Agents
Shunyu Yao
|
Karthik Narasimhan
|
Matthew Hausknecht
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Text-based games simulate worlds and interact with players using natural language. Recent work has used them as a testbed for autonomous language-understanding agents, with the motivation being that understanding the meanings of words or semantics is a key component of how humans understand, reason, and act in these worlds. However, it remains unclear to what extent artificial agents utilize semantic understanding of the text. To this end, we perform experiments to systematically reduce the amount of semantic information available to a learning agent. Surprisingly, we find that an agent is capable of achieving high scores even in the complete absence of language semantics, indicating that the currently popular experimental setup and models may be poorly designed to understand and leverage game texts. To remedy this deficiency, we propose an inverse dynamics decoder to regularize the representation space and encourage exploration, which shows improved performance on several games including Zork I. We discuss the implications of our findings for designing future agents with stronger semantic understanding.
2020
Keep CALM and Explore: Language Models for Action Generation in Text-based Games
Shunyu Yao
|
Rohan Rao
|
Matthew Hausknecht
|
Karthik Narasimhan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Text-based games present a unique challenge for autonomous agents to operate in natural language and handle enormous action spaces. In this paper, we propose the Contextual Action Language Model (CALM) to generate a compact set of action candidates at each game state. Our key insight is to train language models on human gameplay, where people demonstrate linguistic priors and a general game sense for promising actions conditioned on game history. We combine CALM with a reinforcement learning agent which re-ranks the generated action candidates to maximize in-game rewards. We evaluate our approach using the Jericho benchmark, on games unseen by CALM during training. Our method obtains a 69% relative improvement in average game score over the previous state-of-the-art model. Surprisingly, on half of these games, CALM is competitive with or better than other models that have access to ground truth admissible actions. Code and data are available at https://github.com/princeton-nlp/calm-textgame.