Maurício Gruppi
Also published as: Mauricio Gruppi
2025
On the Effects of Fine-tuning Language Models for Text-Based Reinforcement Learning
Mauricio Gruppi
|
Soham Dan
|
Keerthiram Murugesan
|
Subhajit Chaudhury
Proceedings of the 31st International Conference on Computational Linguistics
Text-based reinforcement learning involves an agent interacting with a fictional environment using observed text and admissible actions in natural language to complete a task. Previous works have shown that agents can succeed in text-based interactive environments even in the complete absence of semantic understanding or other linguistic capabilities. The success of these agents in playing such games suggests that semantic understanding may not be important for the task. This raises an important question about the benefits of LMs in guiding the agents through the game states. In this work, we show that rich semantic understanding leads to efficient training of text-based RL agents. Moreover, we describe the occurrence of semantic degeneration as a consequence of inappropriate fine-tuning of language models in text-based reinforcement learning (TBRL). Specifically, we describe the shift in the semantic representation of words in the LM, as well as how it affects the performance of the agent in tasks that are semantically similar to the training games. These results may help develop better strategies to fine-tune agents in text-based RL scenarios.
2020
SChME at SemEval-2020 Task 1: A Model Ensemble for Detecting Lexical Semantic Change
Maurício Gruppi
|
Sibel Adali
|
Pin-Yu Chen
Proceedings of the Fourteenth Workshop on Semantic Evaluation
This paper describes SChME (Semantic Change Detection with Model Ensemble), a method used in SemEval-2020 Task 1 on unsupervised detection of lexical semantic change. SChME uses a model ensemble combining signals distributional models (word embeddings) and word frequency where each model casts a vote indicating the probability that a word suffered semantic change according to that feature. More specifically, we combine cosine distance of word vectors combined with a neighborhood-based metric we named Mapped Neighborhood Distance (MAP), and a word frequency differential metric as input signals to our model. Additionally, we explore alignment-based methods to investigate the importance of the landmarks used in this process. Our results show evidence that the number of landmarks used for alignment has a direct impact on the predictive performance of the model. Moreover, we show that languages that suffer less semantic change tend to benefit from using a large number of landmarks, whereas languages with more semantic change benefit from a more careful choice of landmark number for alignment.