Mehrdad Farahani
2024
Deciphering the Interplay of Parametric and Non-parametric Memory in Retrieval-augmented Language Models
Mehrdad Farahani
|
Richard Johansson
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Generative language models often struggle with specialized or less-discussed knowledge. A potential solution is found in Retrieval-Augmented Generation (RAG) models which act like retrieving information before generating responses. In this study, we explore how the Atlas approach, a RAG model, decides between what it already knows (parametric) and what it retrieves (non-parametric). We use causal mediation analysis and controlled experiments to examine how internal representations influence information processing. Our findings disentangle the effects of parametric knowledge and the retrieved context. They indicate that in cases where the model can choose between both types of information (parametric and non-parametric), it relies more on the context than the parametric knowledge. Furthermore, the analysis investigates the computations involved in how the model uses the information from the context. We find that multiple mechanisms are active within the model and can be detected with mediation analysis: first, the decision of whether the context is relevant, and second, how the encoder computes output representations to support copying when relevant.
2023
An Empirical Study of Multitask Learning to Improve Open Domain Dialogue Systems
Mehrdad Farahani
|
Richard Johansson
Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)
Autoregressive models used to generate responses in open-domain dialogue systems often struggle to take long-term context into account and to maintain consistency over a dialogue. Previous research in open-domain dialogue generation has shown that the use of auxiliary tasks can introduce inductive biases that encourage the model to improve these qualities. However, most previous research has focused on encoder-only or encoder/decoder models, while the use of auxiliary tasks in encoder-only autoregressive models is under-explored. This paper describes an investigation where four different auxiliary tasks are added to small and medium-sized GPT-2 models fine-tuned on the PersonaChat and DailyDialog datasets. The results show that the introduction of the new auxiliary tasks leads to small but consistent improvement in evaluations of the investigated models.
Search