Meimingwei Li


2025

pdf bib
Decoding Decoded: Understanding Hyperparameter Effects in Open-Ended Text Generation
Esteban Garces Arias | Meimingwei Li | Christian Heumann | Matthias Assenmacher
Proceedings of the 31st International Conference on Computational Linguistics

Decoding strategies for generative large language models (LLMs) are a critical but often underexplored aspect of text generation tasks. Guided by specific hyperparameters, these strategies aim to transform the raw probability distributions produced by language models into coherent, fluent text. In this study, we undertake a large-scale empirical assessment of a range of decoding methods, open-source LLMs, textual domains, and evaluation protocols to determine how hyperparameter choices shape the outputs. Our experiments include both factual (e.g., news) and creative (e.g., fiction) domains, and incorporate a broad suite of automatic evaluation metrics alongside human judgments. Through extensive sensitivity analyses, we distill practical recommendations for selecting and tuning hyperparameters, noting that optimal configurations vary across models and tasks. By synthesizing these insights, this study provides actionable guidance for refining decoding strategies, enabling researchers and practitioners to achieve higher-quality, more reliable, and context-appropriate text generation outcomes.

2024

pdf bib
Adaptive Contrastive Search: Uncertainty-Guided Decoding for Open-Ended Text Generation
Esteban Garces Arias | Julian Rodemann | Meimingwei Li | Christian Heumann | Matthias Aßenmacher
Findings of the Association for Computational Linguistics: EMNLP 2024

Despite the remarkable capabilities of large language models, generating high-quality text remains a challenging task. Numerous decoding strategies—such as beam search, sampling with temperature, top‐k sampling, nucleus (top‐p) sampling, typical decoding, contrastive decoding, and contrastive search—have been proposed to address these challenges by improving coherence, diversity, and resemblance to human-generated text. In this study, we introduce Adaptive Contrastive Search (ACS), a novel decoding strategy that extends contrastive search (CS) by incorporating an adaptive degeneration penalty informed by the model’s estimated uncertainty at each generation step. ACS aims to enhance creativity and diversity while maintaining coherence to produce high-quality outputs. Extensive experiments across various model architectures, languages, and datasets demonstrate that our approach improves both creativity and coherence, underscoring its effectiveness in text-generation tasks. We release our code, datasets, and models to facilitate further research.