Michael Doyle
2024
Testing the Effect of Code Documentation on Large Language Model Code Understanding
William Macke
|
Michael Doyle
Findings of the Association for Computational Linguistics: NAACL 2024
Large Language Models (LLMs) have demonstrated impressive abilities in recent years with regards to code generation and understanding. However, little work has investigated how documentation and other code properties affect an LLM’s ability to understand and generate code or documentation. We present an empirical analysis of how underlying properties of code or documentation can affect an LLM’s capabilities. We show that providing an LLM with “incorrect” documentation can greatly hinder code understanding, while incomplete or missing documentation does not seem to significantly affect an LLM’s ability to understand code.
2022
Practical Attacks on Machine Translation using Paraphrase
Elizabeth M Merkhofer
|
John Henderson
|
Abigail Gertner
|
Michael Doyle
|
Lily Wong
Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)
Studies show machine translation systems are vulnerable to adversarial attacks, where a small change to the input produces an undesirable change in system behavior. This work considers whether this vulnerability exists for attacks crafted with limited information about the target: without access to ground truth references or the particular MT system under attack. It also applies a higher threshold of success, taking into account both source language meaning preservation and target language meaning degradation. We propose an attack that generates edits to an input using a finite state transducer over lexical and phrasal paraphrases and selects one perturbation for meaning preservation and expected degradation of a target system. Attacks against eight state-of-the-art translation systems covering English-German, English-Czech and English-Chinese are evaluated under black-box and transfer scenarios, including cross-language and cross-system transfer. Results suggest that successful single-system attacks seldom transfer across models, especially when crafted without ground truth, but ensembles show promise for generalizing attacks.