Minjia Wang
2025
STAND-Guard: A Small Task-Adaptive Content Moderation Model
Minjia Wang
|
Pingping Lin
|
Siqi Cai
|
Shengnan An
|
Shengjie Ma
|
Zeqi Lin
|
Congrui Huang
|
Bixiong Xu
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track
Content moderation, the process of reviewing and monitoring the safety of generated content, is important for development of welcoming online platforms and responsible large language models. Content moderation contains various tasks, each with its unique requirements tailored to specific scenarios. Therefore, it is crucial to develop a model that can be easily adapted to novel or customized content moderation tasks accurately without extensive model tuning. This paper presents STAND-Guard, a Small Task-Adaptive coNtent moDeration model. The basic motivation is: by performing instruct tuning on various content moderation tasks, we can unleash the power of small language models (SLMs) on unseen (out-of-distribution) content moderation tasks. We also carefully study the effects of training tasks and model size on the efficacy of cross-task fine-tuning mechanism. Experiments demonstrate STAND-Guard is comparable to GPT-3.5-Turbo across over 40 public datasets, as well as proprietary datasets derived from real-world business scenarios. Remarkably, STAND-Guard achieved nearly equivalent results to GPT-4-Turbo on unseen English binary classification tasks.
2024
Bio-RFX: Refining Biomedical Extraction via Advanced Relation Classification and Structural Constraints
Minjia Wang
|
Fangzhou Liu
|
Xiuxing Li
|
Bowen Dong
|
Zhenyu Li
|
Tengyu Pan
|
Jianyong Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The ever-growing biomedical publications magnify the challenge of extracting structured data from unstructured texts. This task involves two components: biomedical entity identification (Named Entity Recognition, NER) and their interrelation determination (Relation Extraction, RE). However, existing methods often neglect unique features of the biomedical literature, such as ambiguous entities, nested proper nouns, and overlapping relation triplets, and underutilize prior knowledge, leading to an intolerable performance decline in the biomedical domain, especially with limited annotated training data. In this paper, we propose the Biomedical Relation-First eXtraction (Bio-RFX) model by leveraging sentence-level relation classification before entity extraction to tackle entity ambiguity. Moreover, we exploit structural constraints between entities and relations to guide the model’s hypothesis space, enhancing extraction performance across different training scenarios. Comprehensive experimental results on biomedical datasets show that Bio-RFX achieves significant improvements on both NER and RE tasks. Even under the low-resource training scenarios, it outperforms all baselines in NER and has highly competitive performance compared to the state-of-the-art fine-tuned baselines in RE.