2024
pdf
bib
abs
Can LLMs Recognize Toxicity? A Structured Investigation Framework and Toxicity Metric
Hyukhun Koh
|
Dohyung Kim
|
Minwoo Lee
|
Kyomin Jung
Findings of the Association for Computational Linguistics: EMNLP 2024
In the pursuit of developing Large Language Models (LLMs) that adhere to societal standards, it is imperative to detect the toxicity in the generated text. The majority of existing toxicity metrics rely on encoder models trained on specific toxicity datasets, which are susceptible to out-of-distribution (OOD) problems and depend on the dataset’s definition of toxicity. In this paper, we introduce a robust metric grounded on LLMs to flexibly measure toxicity according to the given definition. We first analyze the toxicity factors, followed by an examination of the intrinsic toxic attributes of LLMs to ascertain their suitability as evaluators. Finally, we evaluate the performance of our metric with detailed analysis. Our empirical results demonstrate outstanding performance in measuring toxicity within verified factors, improving on conventional metrics by 12 points in the F1 score. Our findings also indicate that upstream toxicity significantly influences downstream metrics, suggesting that LLMs are unsuitable for toxicity evaluations within unverified factors.
pdf
bib
abs
Fine-grained Gender Control in Machine Translation with Large Language Models
Minwoo Lee
|
Hyukhun Koh
|
Minsung Kim
|
Kyomin Jung
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
In machine translation, the problem of ambiguously gendered input has been pointed out, where the gender of an entity is not available in the source sentence. To address this ambiguity issue, the task of controlled translation that takes the gender of the ambiguous entity as additional input have been proposed. However, most existing works have only considered a simplified setup of one target gender for input. In this paper, we tackle controlled translation in a more realistic setting of inputs with multiple entities and propose Gender-of-Entity (GoE) prompting method for LLMs. Our proposed method instructs the model with fine-grained entity-level gender information to translate with correct gender inflections. By utilizing four evaluation benchmarks, we investigate the controlled translation capability of LLMs in multiple dimensions and find that LLMs reach state-of-the-art performance in controlled translation. Furthermore, we discover an emergence of gender interference phenomenon when controlling the gender of multiple entities. Finally, we address the limitations of existing gender accuracy evaluation metrics and propose leveraging LLMs as an evaluator for gender inflection in machine translation.
2023
pdf
bib
abs
Asking Clarification Questions to Handle Ambiguity in Open-Domain QA
Dongryeol Lee
|
Segwang Kim
|
Minwoo Lee
|
Hwanhee Lee
|
Joonsuk Park
|
Sang-Woo Lee
|
Kyomin Jung
Findings of the Association for Computational Linguistics: EMNLP 2023
Ambiguous questions persist in open-domain question answering, because formulating a precise question with a unique answer is often challenging. Previous works have tackled this issue by asking disambiguated questions for all possible interpretations of the ambiguous question. Instead, we propose to ask a clarification question, where the user’s response will help identify the interpretation that best aligns with the user’s intention. We first present CAmbigNQ, a dataset consisting of 5,653 ambiguous questions, each with relevant passages, possible answers, and a clarification question. The clarification questions were efficiently created by generating them using InstructGPT and manually revising them as necessary. We then define a pipeline of three tasks—(1) ambiguity detection, (2) clarification question generation, and (3) clarification-based QA. In the process, we adopt or design appropriate evaluation metrics to facilitate sound research. Lastly, we achieve F1 of 61.3, 25.1, and 40.5 on the three tasks, demonstrating the need for further improvements while providing competitive baselines for future work.
pdf
bib
abs
Target-Agnostic Gender-Aware Contrastive Learning for Mitigating Bias in Multilingual Machine Translation
Minwoo Lee
|
Hyukhun Koh
|
Kang-il Lee
|
Dongdong Zhang
|
Minsung Kim
|
Kyomin Jung
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Gender bias is a significant issue in machine translation, leading to ongoing research efforts in developing bias mitigation techniques. However, most works focus on debiasing bilingual models without much consideration for multilingual systems. In this paper, we specifically target the gender bias issue of multilingual machine translation models for unambiguous cases where there is a single correct translation, and propose a bias mitigation method based on a novel approach. Specifically, we propose Gender-Aware Contrastive Learning, GACL, which encodes contextual gender information into the representations of non-explicit gender words. Our method is target language-agnostic and is applicable to pre-trained multilingual machine translation models via fine-tuning. Through multilingual evaluation, we show that our approach improves gender accuracy by a wide margin without hampering translation performance. We also observe that incorporated gender information transfers and benefits other target languages regarding gender accuracy. Finally, we demonstrate that our method is applicable and beneficial to models of various sizes.
2019
pdf
bib
abs
Topological Data Analysis for Discourse Semantics?
Ketki Savle
|
Wlodek Zadrozny
|
Minwoo Lee
Proceedings of the 13th International Conference on Computational Semantics - Student Papers
In this paper we present new results on applying topological data analysis to discourse structures. We show that topological information, extracted from the relationships between sentences can be used in inference, namely it can be applied to the very difficult legal entailment given in the COLIEE 2018 data set. Previous results of Doshi and Zadrozny (2018) and Gholizadeh et al. (2018) show that topological features are useful for classification. The applications of computational topology to entailment are novel in our view provide a new set of tools for discourse semantics: computational topology can perhaps provide a bridge between the brittleness of logic and the regression of neural networks. We discuss the advantages and disadvantages of using topological information, and some open problems such as explainability of the classifier decisions.