Mofan Duan


2020

pdf bib
Chinese Grammatical Error Detection Based on BERT Model
Yong Cheng | Mofan Duan
Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications

Automatic grammatical error correction is of great value in assisting second language writing. In 2020, the shared task for Chinese grammatical error diagnosis(CGED) was held in NLP-TEA. As the LDU team, we participated the competition and submitted the final results. Our work mainly focused on grammatical error detection, that is, to judge whether a sentence contains grammatical errors. We used the BERT pre-trained model for binary classification, and we achieve 0.0391 in FPR track, ranking the second in all teams. In error detection track, the accuracy, recall and F-1 of our submitted result are 0.9851, 0.7496 and 0.8514 respectively.
Search
Co-authors
Venues