Mohammad Akbar-Tajari
2024
Stochastic Fine-Tuning of Language Models Using Masked Gradients
Mohammad Akbar-Tajari
|
Mohammad Taher Pilehvar
Findings of the Association for Computational Linguistics: EMNLP 2024
Large Language Models (LLMs) have emerged as the dominant paradigm in Natural Language Processing owing to their remarkable performance across various target tasks. However, naively fine-tuning them for specific downstream tasks often requires updating a vast number of parameters, resulting in high computational costs and overfitting when training data is limited. In this paper, we propose a novel approach, called *Stochastic Tuning*, that addresses these challenges by selectively updating a small subset of parameters in each step of the tuning process. Our approach is characterized by its customization of updates based on task-specific partial gradients with respect to stochastic sub-networks. The advantage of Stochastic Tuning over existing solutions lies in its ability to consider both parameter weights as well as forward values which guarantees a context-sensitive fine-tuning. Our experiments demonstrate that Stochastic Tuning outperforms existing lightweight fine-tuning methods, improving average performance by over two points on RoBERTa across several tasks in the GLUE benchmark while updating merely **0.08**% of the model’s parameters. The code for our implementation can be found at https://github.com/m-Tajari/StocTuning_LLMs.