Mohammad Pilehvar


2023

pdf bib
DiFair: A Benchmark for Disentangled Assessment of Gender Knowledge and Bias
Mahdi Zakizadeh | Kaveh Miandoab | Mohammad Pilehvar
Findings of the Association for Computational Linguistics: EMNLP 2023

Numerous debiasing techniques have been proposed to mitigate the gender bias that is prevalent in pretrained language models. These are often evaluated on datasets that check the extent to which the model is gender-neutral in its predictions. Importantly, this evaluation protocol overlooks the possible adverse impact of bias mitigation on useful gender knowledge. To fill this gap, we propose **DiFair**, a manually curated dataset based on masked language modeling objectives. **DiFair** allows us to introduce a unified metric, *gender invariance score*, that not only quantifies a model’s biased behavior, but also checks if useful gender knowledge is preserved. We use **DiFair** as a benchmark for a number of widely-used pretained language models and debiasing techniques. Experimental results corroborate previous findings on the existing gender biases, while also demonstrating that although debiasing techniques ameliorate the issue of gender bias, this improvement usually comes at the price of lowering useful gender knowledge of the model.