Mohammed (Ehsan) Hoque
2019
UR-FUNNY: A Multimodal Language Dataset for Understanding Humor
Md Kamrul Hasan
|
Wasifur Rahman
|
AmirAli Bagher Zadeh
|
Jianyuan Zhong
|
Md Iftekhar Tanveer
|
Louis-Philippe Morency
|
Mohammed (Ehsan) Hoque
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Humor is a unique and creative communicative behavior often displayed during social interactions. It is produced in a multimodal manner, through the usage of words (text), gestures (visual) and prosodic cues (acoustic). Understanding humor from these three modalities falls within boundaries of multimodal language; a recent research trend in natural language processing that models natural language as it happens in face-to-face communication. Although humor detection is an established research area in NLP, in a multimodal context it has been understudied. This paper presents a diverse multimodal dataset, called UR-FUNNY, to open the door to understanding multimodal language used in expressing humor. The dataset and accompanying studies, present a framework in multimodal humor detection for the natural language processing community. UR-FUNNY is publicly available for research.
Search
Co-authors
- Md Kamrul Hasan 1
- Wasifur Rahman 1
- AmirAli Bagher Zadeh 1
- Jianyuan Zhong 1
- Md Iftekhar Tanveer 1
- show all...